
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 
films the text directly from the original or copy submitted. Thus, some 
thesis and dissertation copies are in typewriter face, while others may 
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note will indicate 
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand com er and 
continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to order.

U niversity M icrofilms International 
A Bell & H owell Information C om p an y  

3 0 0  North Z e e b  R oad . Ann Arbor. Ml 4 8 1 0 6 -1 3 4 6  USA  
3 1 3 /7 6 1 -4 7 0 0  8 0 0 /5 2 1 -0 6 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Order Num ber 9426311

C om puter-a ided  system s engineering m ethodology su p p o rt an d  
its effect on th e  o u tp u t o f s tru c tu re d  analysis

Jankowski, David John, Ph.D.

The University of Arizona, 1994

Copyright © 1994 by Jankowski, D avid John. A ll rights reserved.

U M I
300 N. ZeebRd.
Ann Aibor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

COMPUTER-AIDED SYSTEMS ENGINEERING METHODOLOGY SUPPORT 

AND ITS EFFECT ON THE OUTPUT OF STRUCTURED ANALYSIS

by

David John Jankowski

Copyright® David John Jankowski 1994

A Dissertation Submitted to the Faculty of the

COMMITTEE ON BUSINESS ADMINISTRATION

In Partial Fulfillment of the Requirements 
For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

1 9 9 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

THE UNIVERSITY OF ARIZONA 
GRADUATE COLLEGE

As members of the Final Examination Committee, we certify that we have

read the dissertation prepared by David John Jankowski_________________
entitled Computer-Aided Systems Engineering Methodology Support and Its 

>•*..

Effect on the Output of Structured Analysis_____________________

and recommend that it be accepted as fulfilling the dissertation 

requirement for the Degree of Doctor of Philosophy

1/ 15/9
uglas R. Vogel

4 / 15/94
Dr. Dav] 

'/
Pingry

4 / 15/94
D r . Sarma Nidumoiu Date

4 / 15/94
Dr. -T-it-us D_ Pupplin

. /  s i ' J  
 ■( • •

Date

Date

Final approval and acceptance of this dissertation is contingent upon 
the candidate's submission of the final copy of the dissertation to the 
Graduate College.

I hereby certify that I have read this dissertation prepared under my 
direction and recommend that, it be accepted as fulfilling the dissertation 
requirement.

4/ 15/94
Dissertation Director
Dr. Douglas R. Vogel

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for 
an advanced degree at The University of Arizona and is deposited in the University 
Library to be made available to borrowers under the rules of the Library.

Brief quotations from this dissertation are allowable without special 
permission, provided that accurate acknowledgement of source is made. Requests for 
permission for extended quotation from or reproduction of this manuscript in whole or 
in part may be granted by the copyright holder.

SIGNED:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

ACKNOWLEDGEMENTS

4

I would like to begin by thanking my committee (Drs. Doug Vogel, David Pingry, 
Suzanne Weisband, Ram Nidumolu, and Titus Purdin) for their efforts in making this 
dissertation a reality. None of this research would have been possible without the 
support and resources provided by Dr. Jay Nunamaker. Without the help and 
cooperation of Drs. Craig Tyran and Ram Nidumolu this experiment would never 
have occurred. I would also like to thank Drs. Mark Silver and Sirkka Jarvenpaa for 
answering my questions concerning their work with restrictiveness and guidance. 
Thank you, also, to Dr. Ron Norman for providing mentoring and support. Dr-Joy 
Egbert provided valuable editing advice.

My professional life has been made much easier with the help of several of my 
colleagues. First, I would like to thank Drs. Leonard Jessup and Joseph Valacich for 
their support, faith, and wisdom. These two are the “total packages.” Dr. Mark 
Fuller served as a sounding board for ideas and as an island of sanity in the months 
before I left Tucson. I would also like to recognize the support and advice from my 
colleagues in the College of Business Administration at California State University, 
San Marcos (especially Drs. Tom Anderson, George Diehr, Robert Black, and Regina 
Eisenbach) and thank them for their patience.

My friends in San Diego and Tempe have always been there for me. Several friends 
whom I met while living in Tucson deserve special mention: Bob Mercier, Tyson 
Henry, Lisa Whitney, Kathy Harbour, Chuck Duerr, Frank DiMaggio, John Sharp, 
and Keith Coleman. We’ve gone our separate ways but I will always remember you.

Two women, for better or worse, supported me through part of this endeavor. From 
Andrea Albi I learned the difference between what I want and what I need. From 
Mary McAuliffe I learned that when things appear too good to be true they probably 
are. “I’m still standing, better than I ever did . . .”

My family has been especially supportive; I love them very much. I wish to give 
special thanks to my sister Kathleen and her husband Michael for helping to make my 
stay in Tucson more enjoyable.

To the Arizona State University Sun Devils, the Phoenix Suns, Queen, Queensryche, 
U2, and Van Halen -- thank you for helping to make me happy.

Finally, for my scholars -- past, present, and future — a special thanks for helping to 
make my chosen profession a more enjoyable one.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

DEDICATION

5

Tucson? The University of Arizona? A die-hard Sun Devil fan? Isn’t that a little bit 

like oil and water? Coming to the U of A has turned out to be one of the best moves I 

have ever made. Upon my arrival I quickly realized how much I really love the 

academic life. The campus, the students, the football games, the basketball games, the 

baseball games, sorority row, the Mall, the Rec Center — this is what college is all 

about. Tucson, what can I say? From Sam Hughes to downtown, from West 

University to North University, from Sabino Canyon to Tanque Verde Falls, from the 

Santa Catalinas to the Tucson mountains, from the flooded streets to the suicide lanes 

- - 1 enjoyed every minute of it. Sunny days, gorgeous sunsets, refreshing monsoons — 

I could not have asked for better weather. Dirt Bag’s, Shanty, Buffet, Bob Dobb’s, El 

Corral, El Dorado, Cross Roads, Downtown Saturday Night, Pig Pen, Someplace 

Else, Gentle Ben’s, Bum Steer, Wildcat House, Scarlet’s, Mud Bugg’s, Green 

Dolphin, Luke’s, Mama’s, Mike’s, Sanchez, Caruso’s, 4th Avenue Street Fair, 6th 

Street Pub, Hutch’s, Spot Deli — yeah, I think I had a good time. As I bring this part 

of my life to an end I must stop and say “thank you” to the University of Arizona and 

to Tucson. I will always have fond memories of you.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

6

TABLE OF CONTENTS

LIST OF FIGURES..................................................................................................... 9

LIST OF TABLES ....................................................................................................... 10

ABSTRACT .................................................................................................................. 11

1 INTRODUCTION ..................................................................................................  13
1.1 Problem Statement and Research Motivation............................................... 13
1.2 Research Contribution ..................................................................................  20
1.3 Organization of Dissertation.......................................................................... 21

2 LITERATURE R E V IE W .......................................................................................  22
2.1 Introduction ..................................................................................................  22
2.2 Systems Development Life Cycle ............................................................... 22

2.2.1 Use of the Life Cycle .......................................................................... 26
2.3 Structured Techniques .................................................................................. 28

2.3.1 Principles of the Structured Techniques..............................................  31
2.3.2 Structured A nalysis...............................................................................  32

2.3.2.1 Data Flow Diagrams .................................................................  34
2.3.2.2 Primitive Process Specifications ..............................................  36
2.3.2.3 Data D ictionary .......................................................................... 36

2.3.3 Research on the Use of Structured A nalysis......................................  37
2.3.4 Drawbacks of Structured A nalysis....................................................... 41

2.4 Computer-Aided Systems Engineering ....................................................... 42
2.4.1 What is CASE? ..................................................................................... 43
2.4.2 Benefits From Using C A SE .................................................................  45

2.4.2.1 CASE’S Impact on Information System Effectiveness ......  46
2.4.2.2 CASE’S Impact on Information System R eliability ............ 48
2.4.2.3 CASE’S Impact on Development Efficiency ..........................  50

2.5 CASE as a Methodology Com panion.........................................................  53
2.5.1 Classifying CASE Methodology Support............................................  54

2.6 Sum m ary........................................................................................................ 61

3 CONCEPTS, VARIABLES, AND HYPOTHESES ............................................ 63
3.1 Introduction ..................................................................................................  63
3.2 A Research Model for Systems Developm ent............................................ 63

3.2.1 Properties of System Requirements ....................................................  66
3.2.2 Properties of the Development Personnel............................................ 66
3.2.3 Properties of the Tools and Methods .................................................  66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

7

TABLE OF CONTENTS (continued)

3.3 A Framework for Classifying CASE Methodology Support......................  67
3.3.1 CASE Tool Restrictiveness.................................................................. 68
3.3.2 CASE Tool Development Guidance....................................................  75
3.3.3 Objectives of Restrictiveness ...............................................................  80

3.3.3.1 Comparison of Two CASE Tools ..........................................  81
3.4 Research Variable: Methodology Consistency.............................................. 102
3.5 Research Hypotheses....................................................................................... 104
3.6 Sum m ary..........................................................................................................105

4 METHODOLOGY.....................................................................................................107
4.1 Introduction .................................................................................................... 107
4.2 V ariab les..........................................................................................................107

4.2.1 Independent V ariable...............................................................................107
4.2.2 Control V ariables.................................................................................... 108
4.2.3 Dependent Variable..................................................................................108

4.3 Experimental D e s ig n .......................................................................................109
4.4 Subjects............................................................................................................ 109
4.5 Experimental Task ..........................................................................................I l l
4.6 Experimental S e ttin g .......................................................................................112

4.6.1 Training.................................................................................................... 112
4.6.2 Reference M aterials..................................................................................114
4.6.3 Software ..................................................................................................114
4.6.4 H ardw are..................................................................................................116

4.7 Experimental Procedures..................................................................................116
4.8 Sum m ary..........................................................................................................118

5 RESULTS ..................................................................................................................119
5.1 Introduction .................................................................................................... 119
5.2 Project Summary .............................................................................................119
5.3 Methodology Correctness ...............................................................................121
5.4 Sum m ary.......................................................................................................... 129

6 DISCUSSION OF RESULTS.................................................................................... 130
6.1 Introduction .....................................................................................................130
6.2 Principal Research Findings............................................................................ 130

6.2.1 Top-Down Design (Process) ................................................................. 130
6.2.2 Data Flow Diagram (Internal Consistency)............................................131
6.2.3 Context Diagram (Internal Consistency) .............................................. 132
6.2.4 Process (Internal Consistency) ...............................................................133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

8

TABLE OF CONTENTS (continued)

6.2.5 External Entity (Internal Consistency)....................................................134
6.2.6 Data Flow (Internal Consistency) ......................................................... 134
6.2.7 Data Store (Internal Consistency) ......................................................... 136
6.2.8 Summary of Internal Consistency Rule Violations .............................. 137
6.2.9 Data Flow Diagram (Hierarchical Consistency)....................................137
6.2.10 Process (Hierarchical Consistency)...................................................... 138
6.2.11 Data Flow (Hierarchical Consistency)................................................. 140
6.2.12 Data Store (Hierarchical Consistency)................................................. 142
6.2.13 Primitive Process Specification (Hierarchical Consistency) .............. 143
6.2.14 Summary of Hierarchical Consistency Rule Violations...................... 145
6.2.15 Summary of Methodology Rule V iolations.........................................146

6.3 Implications for Systems Development ......................................................... 147
6.4 Implications for Systems A nalysts................................................................. 150
6.5 Feasibility of CASE Support for Structured Analysis .................................152
6.6 Sum m ary..........................................................................................................166

7 CONCLUSION..........................................................................................................167
7.1 Introduction .................................................................................................... 167
7.2 Contributions.................................................................................................... 167
7.3 Research Lim itations.......................................................................................169
7.4 Future Research...............................................................................................170

7.4.1 Alternative User Interfaces .................................................................... 171
7.4.2 CASE Methodology Support as a Pedagogical Instrument................... 172
7.4.3 CASE Methodology Support Effects on Structured D e sig n .................173

7.5 Conclusion.......................................................................................................174

A SUBJECT BACKGROUND SURVEY....................................................................176

B HOTEL REQUIREMENTS SPECIFICATION...................................................... 179

REFERENCES ............................................................................................................ 192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

9

LIST OF FIGURES

Figure 1 Systems Development Life Cycle — Waterfall M odel..............................  24

Figure 2 The Structured Techniques.......................................................................... 29

Figure 3 Leveling a Data Flow Diagram    . 35

Figure 4 CASE Tool Architecture............................................................................. 44

Figure 5 Layered Structure of a CASE Tool (Page-Jones, 1988)....................  57

Figure 6 Systems Development Effort Model (Wrigley & Dexter, 1988)....... 63

Figure 7 Extended Systems Development Effort M o d e l.........................................  65

Figure 8 CASE Tool Restrictiveness (adapted from Silver, 1 9 9 0 )......................... 68

Figure 9 Restricting the Set of Systems Development A ctivities............................ 69

Figure 10 Restricting the Execution of the Systems Development P rocess  73

Figure 11 CASE Tool Development Guidance (adapted from Silver, 1990) . . . .  75

Figure 12 Active Guidance for Executing the Systems Development Process . . .  77

Figure 13 Passive Guidance for Executing the Systems Development Process . . .  78

Figure 14 Research Design — Replicated Project Study ............................................109

Figure 15 User Interface for VAW 3.1 (top) and Excelerator 1.9 (bottom) . . . .  115

Figure 16 Spectrum of Methodology Enforcement ....................................................155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

10

LIST OF TABLES

Table 1 Methodology Checks for CASE Tools with Different Philosophies . . . .  59

Table 2 Structured Analysis Methodology Rules ....................................................  71

Table 3 Results of CASE Tool E valuation...............................................................  82

Table 4 Summary of Visible Analyst Workbench 3.1 Methodology Enforcement . 99

Table 5 Summary of Excelerator 1.9 Methodology Enforcement.............................. 100

Table 6 Summary of Project Size A ttributes...............................................................121

Table 7 Summary of Comparison of Rule Violations Between CASE Tools . . . .  128 

Table 8 Summary of CASE Tool Methodology Enforcement Feasibility.................165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

ABSTRACT

11

This dissertation investigates the effects of computer-aided systems engineering 

(CASE) tool methodology support on the system specification output from structured 

analysis. A replicated project study was employed to allow for control of the 

requirements specification. Sixteen groups of four upper-division, undergraduate MIS 

students developed a system specification from the requirements specification of a 

hotel information system. The groups developed the specifications by following the 

Yourdon structured analysis methodology, with the aid of two popular, personal 

computer-based CASE tools. Both CASE tools claim to support the methodology but 

the methodology support offered by the two tools is different. Specifically, the size 

of the rule base varies between the tools, and the implementation mechanism for 

enforcing a specific methodology rule varies both between tools and between rules. It

is hypothesized that the number of violations of a particular methodology rule is a 

function of the implementation mechanism, i.e., rules that are rigidly enforced will be 

violated less frequently than rules that are not rigidly enforced or are not a part of the 

CASE tool’s rule base. The results indicate that, regardless of the type of 

methodology support supplied by the CASE tool, there are very few violations of the 

methodology rules that apply to the internal consistency of a data flow diagram. 

However, when the system is examined by verifying the hierarchical consistency of 

the data flow diagrams, the number of specification errors increases. Further, for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

12

some of the methodology rules, the number of violations is proportional to the amount 

of support provided by the CASE tool. One consequence of these results is that rules 

applying to the hierarchical consistency of data flows diagrams should be enforced by 

the CASE tool in as strict a manner as possible to assist in preventing errors from 

propagating down to the primitive process specifications and corrupting the 

construction of structure charts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

13

CHAPTER 1 

INTRODUCTION

Software is inherently complex (Brooks, 1987).

1.1 Problem Statement and Research Motivation

It has been estimated that the backlog for developing mainframe information systems 

is roughly four years (Runyan, 1989). Coupled with this is what Stamps (1987) 

refers to as the “invisible backlog”, i.e., those systems that never get formally 

requested because users are unable to wait for them. This backlog may be attributed 

to the fact that maintenance of current information systems consumes up to 80 percent 

of information systems development resources (Runyan, 1989). With the life-span of 

application systems estimated to be eighteen months (Kendall, 1977), “... it is critical 

that the time and effort expended on systems development be minimized in order to 

reap the benefits of the system as soon as possible and with minimum development 

cost” (Guimares, 1987, p. 494). Despite this sense of urgency, twenty-five percent of 

large system development projects are never completed (DeMarco, 1982). The 

average information system that does get built is one year late and 100 percent over

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

14

budget (Jones, 1991), and often exhibits many symptoms of information systems 

quality problems, including unfulfilled requirements, a high learning curve, existence 

of errors, and maintenance difficulties (Zultner, 1988). Clearly, developing quality 

information systems while utilizing a prudent amount of resources is one of the major 

challenges facing the information systems profession.

There are many factors that affect information system quality. Many of these factors 

pertain to the software component of a system. This is due to the fact that software 

now constitutes approximately 90 percent of the functionality of a typical information 

system (Teresko, 1990). McCall, Richards, and Walters (1977) have identified 

eleven quality factors, which focus on the following three aspects of the software 

component of a computer information system: its operational characteristics, its ability 

to undergo change, and its adaptability to new environments. Unfortunately, these 

factors are too high-level to be meaningful or measured directly (Fenton, 1991). 

Therefore, a set of quality criterion have been defined and functional relationships 

established between the quality criteria and quality factors. System specification 

consistency, or adherence to a development methodology, has been identified as one 

of the criteria affecting the software quality factors mentioned above. Consistency is 

defined to be the software attributes that provide uniform design and implementation 

techniques and documentation (Arthur, 1985). Consistency has been found to directly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

15

impact the following software quality factors: correctness, flexibility, maintainability, 

and reliability.

Computer-aided systems engineering (CASE)1 tools have been proposed as one of 

many “silver bullets” to improve system quality and eliminate the development and 

maintenance backlog of information systems applications (Brooks, 1987). In the past 

several years many companies have developed CASE products which, they claim, will 

fully or partially automate one or more phases of the classical systems development 

life cycle.2 These CASE vendors tout revolutionary advances in both analyst 

productivity and system quality; however, there is little empirical evidence to back 

these claims (Everest & Alanis, 1992; Kemerer, 1989).

One important role of a CASE tool is to serve as a methodology companion, i.e., to 

assist an analyst in the creation of documentation passed to succeeding phases of the 

life cycle, and to guide the analyst through a particular systems development

1 There is no accepted standard for what the “CASE” acronym means. The “A” 
may be interpreted to be “Aided” or “Assisted” while the “S” may be interpreted to be 
“Systems” or “Software”.

2 The proliferation of CASE tools is indicated in the following three statistics: 1) A 
recent CASE product survey shows that there are over 100 vendors offering more than 400 
products (Lindholm, 1992); 2) Sales of CASE tools are projected to exceed $3.5 billion in 
1993 with an annual growth rate of 25 percent (Nash, 1992); 3) By the middle of the 1990’s 
it is estimated that 50 percent of software engineers will own personal CASE tools (Yourdon, 
1992).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

16

methodology (McClure, 1989a). Systems analysts use the development methodologies 

embedded in CASE tools to support systems development tasks, including 

communication with the users. These embedded methodologies are capable of 

producing a high quality product (Chou, Kelley, & Landram, 1992). The level of 

methodology assistance provided by a CASE tool varies from product to product and 

may include a graphics tool to support various diagramming techniques, a data 

dictionary for storing entities associated with a systems project, and automated 

checks, which serve to enforce a particular methodology and help ensure 

completeness and consistency of the resulting specifications. For example, if 

structured analysis is the chosen methodology, and if the analysis specifications are 

consistent with the chosen methodology, structured design and structured 

programming techniques (or code generators) may be used to convert the 

specifications into source code.

Unfortunately, while many vendors claim their product supports a particular 

information systems development methodology (e.g., Yourdon’s structured analysis), 

the actual level of methodology support varies greatly from one CASE tool to 

another. The level of support ranges from the simple existence of methodology 

diagramming symbols to methodology rules that are enforced in real-time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

17

Teresko (1990) describes the current status of methodology support thusly: “CASE 

tools impose a development methodology as a primary benefit to developers. Some 

may dictate very strict methods. Others may be more flexible” (p. 83). However, 

there are many advocates of CASE who believe the level of methodology support 

provided by the tools is insufficient. Alavi (1993) suggests that CASE might be more 

well-received if systems development methodology support was embedded in the 

CASE tools. Loy (1993) states, “The tools do not yet adequately support the methods 

as promised” (p. 31). Page-Jones (1992) further adds that the current level of 

methodology support provided by CASE tools is unacceptable. Yourdon (1992) states 

that a “CASE tool without methodology support is nothing more than a glorified 

drawing tool” (p. 144). A lack of methodology support was cited by information 

systems faculty as one reason why they do not use CASE to support information 

systems coursework (Jankowski & Norman, 1992). A recent survey of CASE experts 

indicates that the integration of CASE tools and methodologies must be improved in 

the future (Crosslin, Bergin, & Stott, 1993), while Henderson and Cooprider (1990) 

state, “CASE products support a weak level of analysis functionality ... increasing the 

level of analysis technology holds strong promise” (p. 251). Falkner (1991) identifies 

the improper use of both CASE and the methodologies automated by CASE as one of 

the organizational diseases that causes poor information systems quality. The idea of 

analysts using the systems development methodologies together with the CASE tools 

is enforced by Crockett, Hall, and Wheeler (1992), who add that, “Through the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

18

selective utilization of CASE tools ... information systems design may be optimized in 

both efficiency and effectiveness. All analysts must be versed in the use of CASE 

and the methodology being supported by the CASE tool” (p. 983). Sumner’s (1993) 

case study of thirteen firms that use CASE concludes that one of the top two success 

factors for implementing CASE is the adherence to the chosen methodology.

In this dissertation a framework for classifying CASE implementation of structured 

analysis methodology rules will be proposed. This framework builds upon previous 

work in the field of information systems restrictiveness, particularly decision support 

system (DSS) restrictiveness. Structured analysis methodology rules will be examined 

and the feasibility of automating them will be discussed. Two best-selling commercial 

CASE products have been selected for further study. These products have been 

described as being at opposite ends of the structured analysis methodology support 

spectrum (Vessey, Jarvenpaa, & Tractinsky, 1992). One of the CASE tools (Visible 

Systems Coiporations’s Visible Analyst Workbench Version 3.0) was classified as 

being “methodologically restrictive” while the second CASE tool (Intersolv’s 

Excelerator Version 1.8) was classified as being “methodologically flexible.” The 

Vessey et al. (1992) research serves to eliminate the notion that methodology support 

is a binary question, i.e., “Does the CASE tool support methodology X?” Rather, 

they have shown that methodology support is much more variable than previously 

believed. However, simply stating that one tool supports a methodology more than

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

19

another tool does not accurately describe the level of methodology support offered by 

a CASE tool. The methodology rules supported by Visible Analyst Workbench are, in 

general, implemented differently than the corresponding methodology rules in 

Excelerator. Additionally, while the methodology rule base supported by Visible 

Analyst Workbench is larger than the methodology rule base in Excelerator, there are 

some rules that Excelerator supports that Visible Analyst Workbench does not 

support.

The two CASE tools under study have been used to support projects in systems 

analysis. Each tool was used by eight systems development teams in support of 

structured analysis. Analysis specifications for a hotel information system were 

produced and the number of methodology violations has been determined from the 

specifications. It is hypothesized that the number of violations of a methodology rule 

is determined by the CASE tool’s enforcement of the rule. For example, a 

methodology rule violation that is automatically flagged as soon as the rule is violated 

should occur less frequently than if the rule violation is flagged only upon the request 

of the analyst. Similarly, a methodology rule that is not a part of a CASE tool’s 

methodology rule base should be violated more often than if the rule is a part of a 

CASE tool’s methodology rule base. The research question being posed is:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

20

What effect does the implementation level o f a methodology rule have upon the 

analysis specifications of a system?

1.2 Research Contribution

Wynekoop and Conger’s (1991) review of CASE research indicates a lack of 

evaluative research that examines, among other things, the various levels of 

methodology support provided by CASE tools. The results of this dissertation will 

advance the literature concerning CASE tools and their impact on system specification 

quality, and will provide some insight into how CASE can improve analyst 

productivity by eliminating much of the labor intensive task of completeness and 

consistency checking of specifications. By providing designers, programmers and/or 

code generators with methodologically correct specifications, system quality will be 

improved. The results are a first step in determining the “optimal” level of 

methodology support provided by CASE tools. Further, CASE tool selection criteria, 

of which support for a particular methodology is a particularly important criteria 

(Amundsen & Christoffersen, 1987; Baram & Steinberg, 1989; Bostrom, 1988; 

Burkhard, 1989; Everest & Alanis, 1992; Linos, 1992; McClure, 1989b; Rozman, 

Gyorkos, & Rizman, 1992; Shafer & Shafer, 1993; Subramanian & Gershon, 1991; 

Zucconi, 1989), will be refined by identifying differences in the level of methodology 

support provided by various CASE products.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

21

1.3 Organization of Dissertation

The chapters of this dissertation are organized as follows: Chapter 2 provides 

background material regarding the systems development life cycle and structured 

analysis, and their effects on system quality. The chapter proceeds to introduce 

CASE technology and explains how CASE automates structured analysis. Next, 

previous classification schemes for CASE methodology support will be reviewed. 

Chapter 3 presents the theoretical framework for this research. A theoretical model 

for systems development is described. A new framework for classifying CASE 

methodology support will be proposed. Next, the research constructs and variables 

are outlined and the chapter concludes with the research hypotheses. Chapter 4 

describes the research methodology adopted for this dissertation. Chapter 5 presents 

the experimental results while Chapter 6 discusses the implications of these results as 

they apply to systems development and CASE technology. Chapter 7 concludes this 

dissertation with a discussion of the limitations of the experimental study and 

suggestions for future research opportunities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 2 

LITERATURE REVIEW

22

2.1 Introduction

Continuous advances in hardware capabilities have enabled increasingly complex 

systems to become technically feasible. These complex systems have necessitated the 

introduction of frameworks for managing the systems development process. Together 

with these frameworks, methodologies are used to help guide an analyst through the 

life cycle of a system.

This chapter explores the evolution and use of the structured techniques and the 

underlying systems development life cycle. Particular attention will be paid to 

structured analysis. The use of CASE tools to aid analysts with the systems 

development process will also be discussed. In addition, some methods of classifying 

CASE tool methodology support will be reviewed.

2.2 Systems Development Life Cycle

Purvis and Sambamurthy (1992) provide the following description of systems 

development:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

23

The goal of systems development is to enable an organization to produce systems 

that meet cost, schedule, and quality objectives. The underlying premise is that 

although each project has different characteristics, there exist similarities as well. 

These similarities justify frameworks for organizing, planning, controlling, and 

executing projects in a consistent manner that build on the experience of prior 

systems development efforts (p. 864).

The systems development life cycle was developed and documented in the 1960s to 

provide defense contractors with a documentation standard for Department of Defense 

projects (Conger, 1994). The life cycle paradigm grew out of the stagewise model 

for developing software (Boehm, 1986). The stagewise model contained the 

following successive stages: operational plan, operational specifications, coding 

specifications, coding, parameter testing, assembly testing, shakedown, and system 

evaluation (Benington, 1956/1983). The stagewise model was developed to avoid the 

“code and go” approach that was prevalent in the early days of high-level 

programming languages. The model attempted to add structure and discipline to what 

was, at the time, an undisciplined process.

The idea behind the life cycle paradigm is twofold: 1) the systems development 

process evolves in distinct phases and 2) each phase is completed before the next 

phase begins (Ledgard, 1987). The most commonly used model of the life cycle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

paradigm is the waterfall model (see Figure 1). This model provides an orderly, 

predictable set of phases, which can facilitate resource allocation and project 

management (DeGrace & Stahl, 1990). Further, entry and exit conditions for each 

phase are defined (Carmel & Becker, 1993). Developed in 1970 (Boehm, 1986), the 

waterfall model added an element of feedback that was missing in the stagewise 

model. After each phase, feedback is given to the previous phase in order to verify

specifications. This feedback is constrained 

model consists of the following phases:

1. Requirements — In the requirements 

phase a thorough understanding of the 

problem is acquired. Users of the system, 

and their data requirements, are identified 

as well as the system’s inputs, outputs, 

files, and so on. If an existing system is 

present, problems with the current system 

are identified. During this phase a 

feasibility study may be performed and 

alternative systems may be proposed.

to successive phases. The waterfall

Figure 1 Systems Development Life Cycle 
— Waterfall Model

3 Carmel and Becker (1993) and DeGrace and Stahl (1990) each describe several 
other life cycle models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

25

2. Analysis — In the analysis phase the proposed system’s functionality is determined. 

A high-level view of the system is maintained, concentrating on what the new system 

will do rather than how it will do it. Functional components and their data 

requirements are identified during the analysis phase (Weinberg, 1980; Cougar,

1973).

3. Design — In the design phase, detailed data structures and algorithms are proposed. 

File formats as well as the formats for input data screens and output data reports are 

developed. The logical data identified in the analysis phase is described as a physical 

implementation.

4. Coding — The detailed design delivered from the design phase is converted into 

computer code. Each primitive module identified in the analysis phase, and then 

refined in the design phase, is coded. The modules are integrated into subsystems 

and the subsystems are integrated into the software system.

5. Testing -  Testing of the code developed in the coding phase is done at three 

levels. At the unit level each coded module is tested independently to assure that it 

performs according to its specifications. After the modules have been tested, 

integration testing is performed to assure that modules properly communicate with 

each other. System testing is then conducted until it has been determined that the 

system meets the originally specified objectives (Beizer, 1990).

6. Implementation -  During the implementation phase the new system is installed on 

the customer’s hardware platform and the system is brought on-line. Implementation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

26

may take one of four forms: parallel conversion, direct conversion, phased 

conversion, or pilot conversion (Long & Long, 1990).

7. Maintenance -- The maintenance phase is on-going for the life of the system. 

Maintenance activities include the diagnosis and correction of errors (corrective 

maintenance), the modification of the system to interface with a changing environment 

(adaptive maintenance), the enhancement of system functionality (perfective 

maintenance), and the modification of the system to improve future maintainability 

(preventive maintenance) (Pressman, 1992).

2.2.1 Use of the Life Cycle

Unfortunately, few studies have been undertaken comparing the life cycle paradigm 

(and the waterfall model) with other systems development paradigms, such as 

prototyping (Mahmood, 1987). Further, some of the results are contradictory in 

nature. For example, Mahmood’s (1987) study of 61 matched pairs of designer/user 

interviews found that user satisfaction with a system is greater when the system is 

developed under the life cycle rather than with prototyping. This contradicts both the 

Boehm, Gray, and Seewaldt (1984) and Alavi (1984) studies, which found that user 

satisfaction is greater if a system is developed using the prototyping paradigm rather 

than the life cycle. Teng and Sethi’s (1990) experiment using doctoral students as 

users and designers found user participation in the design process to be greater when 

using the life cycle as opposed to prototyping. This finding concurs with Boehm et al.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

27

(1984) but conflicts with Mahmood (1987). The Boehm et al. (1984) study also 

found that project teams using the life cycle produced more coherent designs and 

systems that were easier to integrate than did teams using prototyping. Clearly, the 

evidence supporting one particular systems development paradigm over another is 

inconclusive.

Regardless of the lack of conclusive empirical evidence in support of any particular 

systems development paradigm, the life cycle paradigm is clearly being utilized in the 

professional world. Necco, Gordon, and Tsai (1987) examined systems development 

practices in 97 organizations and found that nearly all of the organizations use the 

waterfall model. They conclude, “Organizations will continue to develop their 

information systems within the framework of the systems development life cycle” (p. 

472). Guimaraes’s (1985) survey of systems development practices in 43 

organizations concludes by recommending the life cycle paradigm for the development 

of systems that will have a “long life.” This includes transaction processing systems, 

well-defined decision support systems, large systems, and systems that primarily serve 

one functional area in a business. This recommendation is reinforced by Palvia and 

Nosek’s (1990) survey of MIS professionals, which found the life cycle to be 

preferred for transaction processing systems, management information systems, and 

well-structured problems. Palvia and Nosek conclude by stating, “The life cycle has 

high use and applicability during all stages of systems development” (p. 27).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

2.3 Structured Techniques

The waterfall model of the systems development life cycle paradigm serves as a 

framework for developing systems. However, it does not provide the systems analyst 

with a process for determining systems requirements, analyzing, designing, coding, or 

testing a new system. Moher and Schneider (1982) describe the early period of 

software engineering as “a discipline dominated by points of view ... based on 

personal observation and intuition, which grew to become ‘rules of thumb”’ (p. 65). 

Since that time, several methods and collections of methods (methodologies) have 

been developed that apply to one or more phases of the systems development life 

cycle. Everest and Alanis’s (1992) study of systems development practices in 

seventeen organizations found that methodologies were used for the following reasons:

1. Improved system quality

2. Improved communication between end users and developers.

3. Reduced IS development effort.

4. Reduced maintenance effort.

5. Introduce discipline and structure.

6. Better documentation.

7. Better tracking of user requirements (p. 349).

An organization chooses a systems development methodology based upon the 

following criteria:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

29

1. Coverage of a broad range of the life cycle.

2. Compatibility with current in-house practices.

3. Support by automated tools.

4. Ability to modify or customize for in-house variations.

5. Ease of use.

6. Wide-spread use (Everest & Alanis, 1992, p. 349).

The most commonly used set of 

systems development methodologies are 

collectively known as the structured 

techniques (see Figure 2).4 The 

structured techniques were developed 

in an attempt to change systems 

development from an informal craft to 

an engineering-like discipline. By the

repiiwnentB
Structured
anafptt

Analysis

da ta  flow cflograrm, 
da ta  dcttooary. 
mftrttpeca

Design

structure charts

S tructued
prograrmtog

Coding
Shuctured
twtag

verified
•otroecode

Testing

Figure 2 The Structured Techniques

middle of the 1960s, the ability to manage the systems development process could not 

meet the need for increasingly complex systems (Colter, 1982). During the later part 

of the 1960s and through the 1970s, computer-aided techniques such as Problem 

Statement Language/Problem Statement Analyzer (PSL/PSA) (Teichroew & Hershey,

4 The Second Annual Report on CASE, a survey conducted in 1990, indicates that the 
structured techniques are used more than any other systems development techniques by a 
factor of approximately 5 to 1 (Yourdon, 1992).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

30

1977) were introduced in an attempt to automate portions of the systems development 

life cycle. These computer-aided techniques did not catch on as expected due to their 

high level of sophistication. Rather, a new set of manual techniques called the 

structured techniques (or structured methodologies) was introduced to provide an 

easier transition to the computer-aided techniques (Couger, 1982).

The initial work toward developing a set of methodologies to apply to the waterfall 

model was confined to the familiar arena of computer programming. Structured 

programming is based upon the concepts of modularity, i.e., the idea that a system 

consists of a set of small components (modules), and stepwise refinement, i.e., the 

process of partitioning a system into its component modules. Additionally identified 

were the primitive constructs (sequence, selection, and iteration) that are necessary to 

implement any logical process. At the same time, structured testing techniques were 

developed, which enabled the system to be verified in a modular, hierarchical fashion.

It was soon realized that a well-coded implementation of a poor design did not solve 

any problems. This led to the introduction of structured design methodologies that 

sought to produce a good design from a set of requirements or analysis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

31

specifications.5 Understanding the need for a complete and consistent specification of 

the logical system led to the introduction of structured analysis (Colter, 1984).

2.3.1 Principles of the Structured Techniques

The fundamental objective of the structured techniques is to produce high-quality 

systems that are easy to maintain. Further, these high-quality systems should be built 

as quickly and as cheaply as possible. These objectives are met by adhering to four 

philosophies: the principle of abstraction, the principle of formality, the divide-and- 

conquer concept, and the hierarchical ordering concept (Martin & McClure, 1988). 

The principle of abstraction dictates that the system be simplified by concentrating on 

what the system is to do rather than how the system does it. The principle of 

formality suggests that a “rigorous, methodical approach” (Martin & McClure, 1988, 

p. 17) be followed, i.e., to treat systems development as an engineering-like 

discipline. The divide-and-conquer concept treats a system as a set of smaller 

systems. Each of these smaller systems, or modules, is inherently less complex than 

the entire system. The hierarchical ordering concept is a method for arranging the 

system modules into a tree-like structure.

5 For a thorough treatment of structured design and its relationship with structured 
analysis see Yourdon and Constantine (1979).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

32

2.3.2 Structured Analysis

Early attempts at developing structured methodologies for systems development 

concentrated primarily on technical aspects related to coding and testing. However, a 

system that is technically sound may not satisfy user requirements due to errors made 

in the early phases, especially analysis, of the systems development life cycle. Any 

errors in the analysis phase may propagate through design, coding and testing.

The consequences of neglecting analysis are well documented. Kapur’s (1986) study 

of system maintenance concluded that 82 % of all changes made after programming 

has begun can be traced to specification omissions, ambiguities, and errors. It is 

estimated that a specification error may be 100 times more expensive to correct when 

detected in the testing phase than if it had been detected and corrected in the analysis 

phase (Haase & Koch, 1982). Yourdon (1992) estimates that an error in phase “N” 

of systems development is ten times cheaper to detect and correct in phase “N” than 

if it is allowed to propagate to phase “N + l ”. In a study of system errors detected 

during or after testing, only one third of the errors were attributed to coding mistakes 

(Boehm, McCleam, & Unfrig, 1975). McKeen’s (1983) study of 32 business 

application systems found that projects that spend more time in the analysis phase 

were more successful with respect to both user satisfaction and completing the system 

within the budgeted time. Khailany, Sanchez, and Lee’s (1985) study of 38 data 

processing companies found that 23 percent of maintenance costs can be attributed to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

33

changing requirements to reflect the original system goals or needs. The study also 

indicates that analysts perceive that a better system definition and specification will 

lead to reduced maintenance costs. Failure to adequately complete a system 

specification is cited by Ginzberg (1981) as a leading cause of system failure. Boehm 

(1976) paints a gloomy picture regarding the consequences of neglecting analysis and 

the resulting analysis specifications. He notes:

1. Only 40 percent of software errors can be traced to the coding phase.

2. A review of systems analysis specifications will typically reveal one to four 

nontrivial errors per page.

3. Top-down design is impossible due to an inadequately defined “top”.

4. There is nothing to test against.

5. Users have no clear statement of what is being produced for them.

6. Management has no clear statement of what the project team is working on (p. 

1227).

Further justification for complete analysis specifications is provided by Golden, 

Mueller, and Anselm (1981) who state, “Good requirements and system specifications 

are necessary in order to estimate system size and development costs” (p. 14).

Despite the evidence concerning the importance of developing a correct system 

specification, Khailany et al. (1985) report that only 5 percent of the life cycle (time 

and cost) is devoted to defining and developing the system specification.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

34

The need for complete and consistent analysis specifications led to the development of 

structured analysis. Structured analysis is a systematic, step-by-step approach to 

performing systems analysis and producing a system specification. Structured 

analysis techniques were primarily devised by Ed Yourdon, Chris Gane, and Trish 

Sarson in the middle of the 1970s. From their work, two similar sets of structured 

analysis methods (the differences, largely cosmetic, are described in Gane, 1990) have 

emerged: Yourdon structured analysis and Gane & Sarson structured analysis. The 

output of structured analysis, the system specification, is passed to the design phase of 

the systems development life cycle. The system specification consists of data flow 

diagrams, a data dictionary, and primitive process specifications (minispecs)

(Yourdon, 1989). The components of the system specification are briefly discussed in 

the remainder of this section.

2.3.2.1 Data Flow Diagrams

Adhering to the principles discussed in Section 2.3.1, structured analysis uses the 

divide-and-conquer and hierarchical ordering concepts to graphically represent the 

functionality of the proposed system. In particular, the emphasis is on the data that 

flows through the logical components of the system and is transformed from input 

data to output data. A set of data flow diagrams is created by first analyzing the 

system from a high-level perspective. The resulting diagram, called a context 

diagram, views the system as a single entity. Most importantly, the context diagram

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

35

establishes a boundary between the system under study and the rest of the world. 

Along with the system, the context diagram displays the external entities, or 

terminators, that will give input to, and receive output from, the system.

After the system boundary has been established, and external entities and their data 

requirements have been defined, the system is decomposed into its primary 

subsystems using a top-down approach. A new diagram, denoted as Level 0, is 

created that displays the primary subsystems (major activities) as well as their data 

requirements. The Level 0 diagram is derived from the context diagram through 

event partitioning (McMenamin &

Palmer, 1984) and leveling (see Figure 

3).6 At the next level down, the data 

flow diagrams depict the working of 

each process in the level 0 diagram. At 

still lower levels, the data flow diagrams 

show the workings of the processes in 

more detail. Each process is continually 

decomposed until it reaches the point where it is in its most primitive form, i.e., a 

process that could be represented by one page of computer code (Intersolv, 1989).

6 For a thorough discussion of the leveling process see Yourdon (1989).

Level 0 (context)

Level 1

Level 2

Levels

Primitive Process Specification

> -0  o

oo

Figure 3 Leveling a Data Flow Diagram

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

36

2.3.2.2 Primitive Process Specifications

A primitive process specification, or minispec, describes what happens inside a 

process symbol on the lowest level of a data flow diagram (Martin & McClure,

1988). Specifically, the process specification details how the input data are 

transformed into output data. Process specifications typically consist of a one page 

(or shorter) structured English description of the data transformation with both inputs 

and outputs from the corresponding data flow diagram process being clearly 

referenced.

2.3.2.3 Data Dictionary

Along with the set of data flow diagrams and primitive process specifications, a data 

dictionary is maintained which organizes the system’s data elements. The data 

dictionary (sometimes referred to as the data repository or data encyclopedia) is a 

centralized repository for system components and contains specifications that describe 

and influence the system being modeled (Gibson, 1989). By centralizing project data, 

changes to any part of the system can be propagated to the effected areas. The 

contents of the data dictionary may include: file specifications, record definitions, data 

element definitions, data relations, external entity descriptions, process specifications, 

input data screens, and output reports (Rob & Coronel, 1993).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

37

2.3.3 Research on the Use of Structured Analysis

The bulk of the literature that reports on the use of the structured techniques is 

primarily confined to structured programming. This is due to some difficulties 

inherent in software engineering experimentation which serve to limit the number of 

experiments that have been conducted (MacDonell, 1993; Moher & Schneider, 1982). 

Most of the studies investigating systems development are performed post-hoc, i.e ., 

projects are chosen for inclusion in a study well after their completion (see, for 

example, Brooks, 1981, or Card, McGarry, & Page, 1987). As a result, much of the 

collected data is based on retrospect rather than concurrent observations made during 

the development period of the system. The controlled experiments that have 

examined the structured techniques by using a replicated project (see, for example, 

Basili & Reiter, 1981, or Benander, 1990) typically involve small, student 

programming projects. Basili and Reiter (1981) acknowledge this problem by stating 

that there is a trade off between toy experiments, which enable a large sample size 

but involve programs consisting of 30 lines of code, and production experiments, 

which enable a great degree of realism but utilize a weak experimental design and 

almost no chance for replication. Boehm (1981) points out the difficulty of making 

reliable statistical inferences based on data collected from production projects.

DeMarco (1982) suggests, however, that any data is better than no data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

38

While the empirical studies of programming indicate that more efficient and less 

error-prone code is the result of using structured programming, as opposed to a 

“spaghetti code” approach, the few empirical studies of structured analysis are less 

conclusive. Along with the difficulties of software engineering research described in 

the preceding paragraph is the further complication that many analysts and/or 

organizations simply do not keep documentation relating to the initial phases of a 

systems development project. As a result, empirical studies concerning the effects of 

the presence or absence of a particular methodology, tool, or technique may rely on 

the memory of the analysts, i.e., their ability to recall the likely effects if similar 

projects from the past had also been carried out with the use of a particular 

methodology (Lempp & Lauber, 1989). Mann (1992) indicates that the issue is 

further complicated by a lack of definitional standards for terms such as 

“methodology” and “life cycle” , as well as a failure to identify appropriate metrics 

for experimental studies.

The above difficulties in performing software engineering research are made evident 

by the results of literature reviews of systems development methodology research.

Both Mann (1992) and Purvis and Sambamurthy (1992) turned up no instances of 

studies comparing the structured techniques to the absence of any methodology. 

However, conclusions made in some of the structured programming studies lend 

credence to the idea that the structured techniques must be utilized from the outset of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

39

a systems development project in order to obtain a quality system. For example,

Card et al.’s (1987) study of 22 software systems concludes that all phases of the 

systems development process must be effectively documented and that this 

documentation improves software reliability. Card, Church, and Agresti’s (1986) 

study of five large software projects reaches conclusions regarding system module 

size, strength, coupling, and descendants that are consistent with the principles of the 

structured techniques described in Section 2.3.1.

Despite the lack of experimental evidence regarding the use of structured analysis, it 

is clear that many analysts and organizations view structured analysis as the best 

technique for handling the analysis phase of the life cycle. Several surveys of 

systems development practices of individual analysts and organizations reveal that 

structured analysis is extremely popular. Necco et al.’s (1987) survey of 97 

organizations indicate that 62 percent of the organizations use structured analysis and 

an additional 20 percent of the non-users were considering adopting structured 

analysis. The survey also reveals that 94 percent of the users of data flow diagrams 

find them to be at least “adequate” as a tool for systems analysis. Similar figures of 

95 percent and 94 percent were given for users of a data dictionary and process 

specifications. The study concludes that, “Structured approaches will increasingly 

supplement traditional/classical approaches to develop computer-based information 

systems” (p. 472). Beck and Perkins’s (1983) survey of systems development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

40

practices in 63 firms indicates that 75 percent of the firms use data flow diagrams. 

Further, data flow diagrams are found to be the most successfully used documentation 

aid for determining and analyzing the user’s requirements. Carey and McLeod’s

(1988) survey of systems development methodology and tool usage at 121 firms 

indicates that data flow diagrams are used by 79 percent of the firms, more than any 

other tool. This level of usage is consistent with that reported in Khailany et al.

(1985). Kievit and Martin’s (1989) survey of systems analysts finds that 45 percent 

of the analysts use a data dictionary at least “most of the time” while 90 percent of 

the analysts use data flow diagrams at least “sometimes.” Additionally, the analysts 

report to be at least “satisfied” with data flow diagrams 83 percent of the time, more 

than with any other analysis tool. Sumner and Sitek’s (1986) survey of 36 firms 

indicates that both data flow diagrams and the data dictionary are popular with the 

systems analysts. Perceived benefits of the tools, as indicated by the analysts, 

include: better requirements analysis, better user understanding and participation, 

increased user satisfaction, ease of maintenance, and more flexible systems.

Sumner’s (1993) case study of systems development practices in 28 firms reports that 

structured analysis is the most widely used development methodology and data flow 

diagrams are the most popular analysis and design tool. Rozman et al. (1992) 

surveyed twelve analysts who use multiple systems development methodologies to 

support analysis and design. The structured techniques are preferred by eleven of the 

twelve analysts. Structured analysis and structured design are specifically cited as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

41

being “easy to learn, simple, and efficient” (p. 45). A 1987 survey of over 1000 

firms, as reported in McClure (1989a), indicates that structured analysis is the most 

popular methodology for systems analysis, and that more firms planned to switch to 

structured analysis than any other methodology. Jankowski and Norman’s (1992) 

survey of information systems faculty indicates that structured analysis is being taught 

in the information systems curriculum more than any other analysis methodology. 

Finally, Sakthivel’s (1991) survey of 27 information systems professionals indicates 

that structured analysis provides uniform support for all factors (versatility, 

functionality, productivity, and efficiency) associated with choosing a systems 

development methodology. Despite the lack of empirical evidence that states that 

structured analysis is the definitive technique for constructing the system specification, 

structured analysis remains the technique of choice for information systems 

professionals.

2.3.4 Drawbacks of Structured Analysis

Despite surveys that indicate the popularity of structured analysis as a methodology 

for performing systems analysis, there are many analysts and organizations that have 

abandoned the methodology. Guimaraes’s (1985) survey of 43 companies found that 

only six were using structured analysis. Two of the six were discontinuing usage due 

to the fact that “it does not seem to be as user friendly as it has been promised to be” 

(p. 497). Structured analysis has been criticized as being “unwieldy and time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

42

consuming” (Sumner & Sitek, 1986, p. 18), and too slow and expensive (Henken,

1988). Yourdon (1986) and Chapin (1979) both indicate that the primary reason for 

rejecting structured analysis is the frustration encountered by analysts when faced with 

manually checking data flow diagrams for internal consistency. These complaints 

helped contribute to the introduction of automated tools to support systems 

development and, especially, the structured techniques.

2.4 Computer-Aided Systems Engineering

Yourdon (1986) makes quite clear the general frustrations that can occur when using 

structured analysis to create the analysis specifications:

Any reasonable systems analyst is willing to draw a diagram once. Drawing a 

hundred such diagrams is a different matter, especially because each diagram 

typically has to be revised and redrawn several times as the analyst and user 

change the model. To further complicate matters, the diagrams must be kept 

consistent with the data dictionary and primitive process specifications (p. 133).

Clearly, a new technology was needed to reduce the labor-intensive nature of 

structured analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

43

2.4.1 What is CASE?

While tools to automate the systems development life cycle first appeared in 1965 

with the introduction of PSL/PSA (Dennis, George, Jessup, Nunamaker, Vogel,

1988), the term “CASE” did not come into use until the appearance of computer- 

aided diagramming and documentation tools in the early 1980’s. Computer-aided 

systems engineering (CASE) tools were developed in order to automate all phases of 

the systems development life cycle, with an emphasis being placed on making the 

structured techniques, and especially structured analysis, more feasible (McClure, 

1989a). Automation of the structured methodologies evolved out of a natural 

maturing of the software engineering discipline (Bordoloi, Courtney, Paranusiwaean, 

1992). Early proponents of CASE argued that the ability to easily and cheaply 

perform more detailed analysis would lead to an emphasis on the initial phases of the 

life cycle, which would increase the probability of a more correct analysis 

specification and decrease the probability of errors appearing in later phases of the 

development process (McDermid, 1990).

Unfortunately, the systems development literature has not settled on a standard 

definition for CASE. It is frequently described as software (Davis, 1987), a 

technique, a technology, a mechanism (Glass, Hughes, Johnston, & McChesney,

1989), a tool, a toolkit, a workbench, a platform (McClure, 1989a), a methodology 

(Teresko, 1990), and a philosophy (Gibson, 1989). Further distinctions are now

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

being made between CASE and integrated

CASE (I-CASE), which claims to automate

the entire development process (primarily in

support of the life cycle paradigm), and

upper-, middle-, and lower-CASE, which

apply to particular phases of the life cycle.

The following definition will be used by the
Figure 4 CASE Tool Architecture

author when referring to CASE: Any

software tool that automates a portion o f the systems development process.

While the above definition implies that stand-alone tools such as a compiler or text 

editor qualify as CASE tools, the definition is more traditionally applied to tools 

that are designed around an automated data dictionary (see Figure 4) and support one 

or more systems development methodologies. As defined in Section 2.3.2.3, the data 

dictionary serves as a repository for the system entities. Other components of the 

CASE tool have access to the dictionary in such a way that any change to the data 

dictionary propagates to the rest of the tool. Windsor (1986) states that this 

architecture allows for changes to be made easily to the system as well as alternative 

systems to be investigated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

45

2.4.2 Benefits From Using CASE

Many academics and information systems professionals believe that CASE can 

improve information system quality. Intuitively, it would appear as if using CASE 

tools to support structured analysis would alleviate any problems analysts may have 

previously had with the technique. There are many CASE tools that claim to support 

the Yourdon or Gane & Sarson structured analysis methodology. By supporting this 

methodology, the CASE tools should make it much easier to draw the complex set of 

data flow diagrams associated with a system specification. Further, the existence of 

an integrated data dictionary should allow for easily checking the completeness and 

consistency of the diagrams vis a vis the data dictionary elements and the minispecs. 

This is supported by Sumner’s (1993) study of thirteen firms that use CASE, which 

reveals that analysis is supported by CASE more than any other life cycle activity and 

that data flow diagram and data dictionary construction are the most commonly used 

analytical tools supported by CASE.

Unfortunately, there is very little empirical evidence that shows that CASE tools can 

improve the productivity of a systems analyst and/or improve the quality of the 

resulting system (Everest & Alanis, 1992; Kemerer, 1989). The majority of the 

evidence that does exist has not been obtained via rigorous experimentation and, 

instead, relies on the perceptions of systems analysts. Much of the evidence in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

46

support of CASE is anecdotal in nature (see, for example, Shultz, 1989)7 and is 

supplied by the CASE vendors themselves. The problems with collecting 

experimental evidence in support of CASE are similar to those discussed in Section

2.3.3 for the structured techniques. Despite the lack of conclusive evidence regarding 

CASE’S impact on systems development, Necco et al.’s survey of systems 

development practices concludes, “Automated tools will be used increasingly to 

support specific systems analysis and design tasks” (p. 473). McGaughey and Gibson 

(1990) reviewed the information system development literature and have identified 

CASE as having the potential to improve information systems performance in the 

areas of effectiveness, reliability, and efficiency. The remainder of this section 

examines the impact CASE can have on IS effectiveness, reliability, and efficiency.

2.4.2.1 CASE’s Impact on Information System Effectiveness 

Effectiveness is the achievement of desired results over time. For an information 

system, the term “effectiveness” can be applied to the quality of the information being 

presented by the system to the end-users. Necco, Tsai, and Hogelson’s (1989) survey 

of fifteen organizations using CASE found that CASE contributed to a “significant” 

improvement in system quality in 60 percent of the organizations and a “moderate” 

improvement in system quality in the remaining 40 percent. Everest and Alanis’s

7 Publications such as Datamation and Information Week often contain recollections 
of successful and unsuccessful applications of CASE technology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

47

(1992) study found that 100 percent of 19 organizations surveyed justified their 

acquisition of CASE by their expectations for an improved end product.

A lack of communication between developers and users during the initial phases of 

the life cycle is frequently cited as a major cause of errors in newly installed systems 

(Andrews, 1983; Cerveny, Ganity, & Sanders, 1985). CASE may contribute to IS 

effectiveness through improved communication between the analysts and users 

(McGaughey & Gibson, 1990). Necco et al.’s (1989) study found that 100 percent of 

organizations surveyed reported at least a “moderate” improvement in 

communications between analysts and users, while 87 percent of the organizations 

reported at least a “moderate” improvement in communications between analysts. 

Stamps (1987) reports that Du Pont realized greater user/analyst communication due 

to the graphical nature of the CASE tool being employed. Everest and Alanis’s 

(1992) study found that 67 percent of the organizations surveyed experienced “a 

positive change in the established working relationship with end users” (p. 350) by 

using CASE tools.

There is only one experimental study that quantitatively evaluates the influence of 

CASE technology on system quality. Granger and Pick (1993) had eleven student 

teams develop a 1500-2000 line Pascal print program. Four of the teams used CASE 

to develop their program; the remaining seven teams did not. Each of the eleven

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

48

teams received an identical set of requirements. The teams using CASE applied the 

technology to the analysis and design phases of the lifecycle. The final source code 

was compared to determine the influence of the presence of CASE on system 

complexity, size, and completeness. Systems developed by CASE users were more 

complete, i.e., met the user requirements, than the systems developed by non-CASE 

users. There was no statistical significance between the CASE systems and the non- 

CASE systems for system complexity or system size. While the results of the sole 

experimental study are not conclusive, organizations are perceiving that their system 

quality is improving by using CASE.

2A.2.2 CASE’s Impact on Information System Reliability

Reliability is the extent to which a system performs in the manner intended by the 

designers and users, i.e., the degree to which it is complete, consistent, and correct 

(Martin & McClure, 1988). Improved system reliability is cited in Everest and 

Alanis’s (1992) study as a justification for acquiring CASE tools. Rowe’s (1993) 

survey of 76 information systems groups finds that analysts who use CASE conform 

to a methodology and have standards more rigidly enforced than those without CASE. 

Lempp and Lauber’s (1989) study indicates that 67 percent of the project managers 

surveyed report finding fewer errors in the later stages of the development effort due 

to better analysis specifications created with the aid of CASE tools.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

49

Three experimental studies have been performed to determine the impact of CASE on 

the completeness and correctness of analysis specifications. Baram, Steinberg, and 

Nosek (1990) looked at the data flow diagrams drawn by 26 information systems 

students. Fifty percent of the students drew their diagrams with the aid of a CASE 

tool. The resulting diagrams were analyzed for their correctness, completeness, 

balance, and readability. The diagrams drawn with the aid of a CASE tool were 

more correct than those drawn without a CASE tool. However, the diagrams drawn 

without a CASE tool were more complete than those drawn with a CASE tool. There 

was no statistical significance for either balance or readability. The authors attribute 

the lack of a major performance difference to the simplicity of the required diagrams.

In the second experimental study, Yellen (1990) examined the impact of CASE on the 

creation of both data flow diagrams and the data dictionary. Thirty information 

systems students were provided with a business description and required to produce a 

context diagram, level 0 diagram, and all related data dictionary entries. Fifty 

percent of the students used a CASE tool to support their work. The resulting 

specifications were analyzed for correctness, completeness, and communicability.

The specifications completed with the aid of the CASE tool were found to be more 

correct than those completed manually. There was no statistical significance for the 

attributes of completeness and communicability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

50

The results of the third experimental study (Frolick, Wilkes, & Rainer, 1993) 

contradict those reported in the preceding two studies. The authors had 31 information 

systems students produce a small set of deliverables (a context diagram, four level 

one diagrams, a report specification, and a file specification) over a three hour 

period. Approximately half of the students used a CASE tool to create their 

deliverables while the other half manually created their deliverables. The authors 

found that the overall quality of the manually produced specifications was better than 

the overall quality of the specifications produced with the aid of a CASE tool. The 

authors replicated this study and observed the same results. The authors acknowledge 

that three hours may not have been sufficient time to conduct the study, as many of 

the subjects who used a CASE tool experienced a great deal of frustration while using 

the tool. While the three experimental studies that examine reliability are 

inconclusive (in part due to the simple nature of the experimental task), surveys of 

organizations that use CASE indicate that system reliability is increased by using 

CASE tools.

2.4.2.3 CASE’S Impact on Development Efficiency

Efficiency is the achievement of desired results with a minimum of resources. 

Sumner’s (1993) case study of thirteen firms that use CASE and fifteen firms that do 

not use CASE examines the perceived benefits of CASE technology. The thirteen 

firms that use CASE report that CASE makes the structured techniques feasible and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

51

allows them to quickly redraw diagrams. The fifteen non-CASE users perceive 

CASE as having the capability to provide several tangible benefits, including making 

the structured techniques feasible, creating a centralized data dictionary, easily 

redrawing diagrams, and adhering to methodology standards. Necco et al.’s (1989) 

survey finds that 47 percent of the firms using CASE experience a “significant” gain 

in productivity, while the remaining 53 percent of the firms using CASE experience a 

“moderate” gain in productivity. The productivity impact reported in Necco et al.

(1989) is seen in such areas as the ability to make more changes to a design, the 

likelihood of future maintenance being easier, and the ease of developing graphical 

representations. Finally, the survey reports that 93 percent of the organizations found 

systems development to be “more enjoyable” when using CASE tools. A Price 

Waterhouse survey reported in (Statland, 1989) indicates that over 50 percent of the 

CASE users surveyed anticipate productivity enhancements of at least 100 percent to 

occur within five years of adopting CASE. When determining how firms rationalize 

their acquisition of CASE, Everest and Alanis (1992) found that 100 percent of the 

firms anticipate reduced IS development efforts and 84 percent anticipate reduced 

maintenance efforts. Thirty-two percent of the firms surveyed indicate that using 

CASE will enable them to more easily reuse software components. Pallatto (1989) 

reports the results of a survey of nineteen firms using CASE, which concludes that 

the most significant benefit derived from CASE is the labor savings during software 

maintenance. McClure (1989a) performed three case studies using Intersolv’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

52

Excelerator CASE tool.8 In the first case study, a United States government 

organization reported that structured analysis specifications that previously took two 

years to complete manually could be completed in four months with the use of a 

CASE tool. In the second case study, ARCO reported a 10-to-l gain in productivity 

by using Excelerator to perform data modeling. In the third case study, Touche Ross 

used Excelerator to assist in the creation of structured analysis specifications and 

found productivity to be increased due to the ease of revising diagrams. Norman and 

Nunamaker (1989) surveyed 91 users of the Excelerator CASE tool in order to 

determine the functions of the CASE tool that provide the greatest increase in analyst 

productivity. The study reveals that the graphics and data modeling tools offered by 

Excelerator are all perceived by the analysts to improve their productivity. In 

particular, in preference rankings, the data flow diagram tool and the data dictionary 

were selected more often than any other function. Lempp and Lauber’s (1989) survey 

of 22 projects in fourteen organizations reveals that all phases of the systems 

development life cycle are felt to be easier when using CASE tools. One particular 

result of note is that 75 percent of the system documentation is done automatically 

with the CASE tools. Freeman’s (1993) on-going case study of 20 information 

systems projects (10 projects were supported by CASE; 10 projects were not 

supported by CASE) finds that the projects using CASE tools are implemented with

8 At the time of the case studies the Excelerator CASE tool was a product of Index 
Technology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

53

only 2 percent more function points than initially estimated after analysis. Projects 

that did not use CASE are implemented with 12 percent more function points than 

initially estimated after analysis. While experimental studies examining CASE’S 

effect on development efficiency have not been conducted, there is data available from 

many case studies and surveys that indicates that CASE has a positive impact on 

information system development efficiency.

2.5 CASE as a Methodology Companion

Despite the beginnings of a base of research that indicates that CASE offers 

improvements in system quality and analyst productivity, there are still many 

professionals and academics who are reluctant to commit to CASE technology. The 

literature cites many problems associated with CASE technology, including a steep 

learning curve, the expense of acquiring CASE tools, the expensive hardware 

platforms required to run the tools, and the lack of integration between tools.

Another frequently cited complaint with CASE tools is the lack of methodology 

support provided by the tools (Alavi, 1993; Crosslin, Bergin, & Stott, 1993; 

Henderson & Cooprider, 1990; Jankowski & Norman, 1992; Loy, 1993; Page-Jones, 

1992).

It is important that the CASE tool and the systems development methodology be fully 

integrated to avoid “rule bending” or “tool bending” (Bostrom, 1988). Rule bending

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

54

occurs when a CASE tool does not adequately support a particular methodology, 

allowing the analyst to incorporate individual modifications to the methodology 

notation, syntax, and/or process. Tool bending occurs when a CASE tool is chosen 

that is inappropriate for the task at hand. Unfortunately, the CASE tool vendors 

provide little support in helping the analyst and organization determine if a particular 

tool and methodology are integrated. For the most part, CASE methodology support 

has been a binary decision, i.e., “Does CASE tool X support methodology Z?” For 

example, a 1991 survey of 45 CASE products reveals that 23 of them claim to 

support Yourdon’s structured analysis while 22 of the products claim to support Gane 

& Sarson structured analysis (DBMS, 1991).9 The extent to which the process and 

product of structured analysis is supported by these tools is not provided by the 

vendors. To further complicate matters, six tools that claim to support structured 

analysis do not support data flow diagrams and six tools that support data flow 

diagrams do not support structured analysis. Clearly there exists a need for a better 

classification of methodology support as provided by a CASE tool.

2.5.1 Classifying CASE Methodology Support

CASE is able to provide support for a systems development methodology by 

automating the methodology’s process steps and by assisting in the preparation of a 

methodology’s products (required documentation) (McClure, 1989a). Automation of

9 Y U G/S = 26; Y n  G/S =  19.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

55

documentation may be accomplished by supporting, for example, the symbol set 

associated with a particular diagramming technique. Process support may be 

accomplished by enforcing a methodology principle such as top-down design by 

requiring the analyst to begin a set of data flow diagrams with a context diagram.

The systems development literature contains very little discussion on defining and/or 

determining the level of methodology support provided by CASE tools. Bostrom 

(1988) proposes classifying CASE tools based upon the number of life cycle phases 

supported by the product: “one phase, some phases, most phases, or all phases” (p.

3). Bordoloi et al. (1992) propose a three-dimensional framework for evaluating 

CASE tools, which uses the phases of the life cycle as one of the dimensions. 

Amundsen and Christoffersen (1987) propose classifying CASE tools by examining 

the level of integration the tools provide between the life cycle phases, i.e., “Can 

each phase be separately automated or can the entire life cycle be automated?” (p. 2). 

However, all three of the above classification schemes fail to take the issue of 

methodology support beyond that of a binary question. Further, none of the proposed 

classifications actually addresses the issue of methodology support; all are, instead, 

examining life cycle support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

56

Along with the above mentioned life cycle support classification, Bostrom (1988) has 

proposed a ranking system for CASE tools based upon their level of methodology 

support:

1. Drawing tools where the symbols cannot be put into methodological context.

2. Rule-based tools that can check the validity and consistency of a single 

document.

3. Rule-based tools that can check an entire set of documentation for validity and 

consistency.

4. Tools that allow the analyst to input new rules (p. 2).

While this classification does specifically address development methodologies, as 

opposed to models or paradigms, it does not go far enough toward helping an analyst 

determine the true level of methodology support offered by the CASE tool. The 

distinction between items 2 and 3 in the above list is minor and the existence of item 

4 would almost certainly lead to the “rule bending” mentioned previously.

A classification similar to the one above is described in (McClure, 1989a). The 

author proposes three levels of knowledge that can be supported by CASE: 

documentation, guidance, and process. Documentation-level knowledge is equivalent 

to item 1 in Bostrom’s ranking. Guidance-level knowledge is a combination of 

Bostrom’s item 2 and item 3. Process-level knowledge can be described as knowing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

57

how to get started, what to do next, and when you are finished. While McClure’s 

classification scheme certainly addresses methodology support, it is essentially a 

ternary scale providing little information beyond that already provided by answering 

the binary question, “Does CASE tool X support methodology Z?”

A combination of the classifications described above is suggested by Page-Jones’s 

(1988) description of a well-planned CASE tool. Page-Jones describes a CASE tool 

as an “onion” (see Figure 5), with an 

outer layer being defined as “a 

structure of a set of items from the next 

(inner) layer” (p. 346). For example, a 

deliverable such as a data flow diagram 

may be described as a set of objects: 

processes, data stores, data flows, and 

external entities. Page-Jones suggests

that when choosing a CASE tool the organization should decide which layers are the 

most important. However, the onion model still treats methodology support as a 

binary question.

The first substantial work aimed at classifying CASE tools based upon their level of 

methodology support is presented in a study by Vessey et al. (1992). Using

Management
.Methodology
Technique
Deliverable
Object
Symbol
Ptxel
Character
Word

Textual

Figure 5 Layered Structure of a CASE 
Tool (Page-Jones, 1988)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

58

terminology taken from the decision support system (DSS) literature, the authors 

describe methodology support as being either restrictive, guided, or flexible. A 

restrictive CASE tool is described by Vessey et al. as being “designed to encourage 

the user to use it in a normative manner” (p. 92). A restrictive CASE tool is 

characterized by checks for methodological consistency that automatically occur 

while the specification item (e.g., a data flow diagram) is being created. If a 

violation is discovered by the tool the analyst must correct the violation before 

proceeding. A guided CASE tool is described by Vessey et al. as being “designed to 

encourage, but not to enforce, the user to use it in a normative way” (p. 92). A 

guided CASE tool is characterized by checks for methodological consistency that 

automatically occur while the specification item is being created. However, if a 

violation is detected by the tool the analyst may ignore the error and proceed. A 

flexible CASE tool is described by Vessey et al. as being “designed to allow the user 

complete freedom in using it” (p. 92). A flexible CASE tool is characterized by 

checks for methodological consistency that occur at the request of the analyst and then 

only after work on the specification item has been completed. All methodology 

violations detected by the CASE tool may be treated by the analyst as warnings.

Table 1 summarizes the categorizations of methodology support proposed in Vessey et 

al. (1992).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

59

Table 1 Methodology Checks for CASE Tools with Different Philosophies (Vessey, 
Jarvenpaa, & Tractinsky, 1992)

When How What
creation/technique/phase auto/request error/warning

Restrictive
process creation automatically error

hierarchical consistency creation automatically error

internal consistency creation automatically

Guided
process creation automatically warning

hierarchical consistency creation automatically warning

internal consistency creation automatically warning

Flexible
hierarchical consistency technique or phase request warning

internal consistency technique or phase request warning

After defining their classification scheme, Vessey et al. apply it to twelve PC-based 

CASE tools. Each CASE tool was examined with respect to a set of methodology 

rules that apply to analysis and design specifications. Nineteen rules are identified for 

data flow diagrams and four rules are identified for minispecs.10 CASE tools were 

labelled as “restrictive”, “guided”, or “flexible” based upon the number of rules 

implemented by the tool and the manner in which they are implemented.

10 For the purposes of data analysis the authors examined seventeen of the nineteen 
data flow diagram methodology rules. None of the results of the survey concerning primitive 
process specifications, data structure diagrams, structure charts, or entity/relationship 
diagrams were reported.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

60

While the scheme described in Vessey et al. (1992) is a positive step toward 

classifying CASE methodology support, there are several areas where there is room 

for improvement. First, the authors are using Silver’s (1988a, 1990, 1991a, 1991b) 

definitions of “restrictive” and “guided” out of context. By doing this they have 

taken a two-dimensional classification and incorrectly oversimplified it by reducing it 

to one dimension. Second, there is virtually no difference between methodology 

checks made at the request of the analyst after exiting a technique (such as data flow 

diagramming) and a phase (such as analysis). Third, their distinction between 

“restrictive” and “guided” relies entirely upon the semantical difference between the 

words “error” and “warning” (when looking at how a violation is displayed to the 

analyst), i.e., Tool A may list a methodology violation as an “error” while Tool B 

may list the same violation as a “warning”. However, the end result is the same — 

the CASE tool leaves it to the analyst to decide whether or not to fix the violation. 

Fourth, the classification scheme is based entirely upon counting data, i.e., Tool A is 

considered to be “more restrictive” than Tool B simply because it has more 

methodology rules in its rule base or has more rules that are implemented in a 

particular fashion. This assumption fails to take into account the fact that there may 

be a particular rule, or subset of rules, that contribute more to the consistency of the 

specifications than any other rule(s). While Tool B may have less rules in its rule 

base than Tool A, Tool B may have rules in its rule base that are not found in the 

rule base of tool A. Finally, none of the CASE tools implement every rule in their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

61

rule base in the same fashion. For a particular CASE tool, some of the rules may be 

enforced in a “restrictive” manner, some may be enforced in a “guided” manner, and 

some may be enforced in a “flexible” manner. As will be discussed in Section 6.5, it 

is not feasible to implement every methodology rule in a restrictive manner.

2.6 Summary

This chapter has reviewed the relevant research on structured analysis and CASE 

support for structured analysis. While empirical research concerning the systems 

development life cycle and the structured techniques is limited, the life cycle and the 

structured techniques are still preferred for systems development. However, many 

organizations and analysts have criticized the structured techniques due to their labor- 

intensive characteristics. CASE tools were introduced in the early 1980’s to answer 

these criticisms and make the structured techniques more feasible. As with the 

structured techniques, empirical research concerning CASE’S ability to affect system 

quality and analyst productivity is limited. The literature makes clear, however, that 

CASE tools need to provide more support for their underlying methodologies. The 

classification schemes proposed for categorizing CASE tools based upon their level of 

methodology support have been reviewed. Chapter 3 introduces a new framework for 

classifying CASE methodology support. Rather than trying to describe an entire tool, 

the unit of study will be the individual rules being supported by the tool. A general

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

model for systems development research will also be presented along with the 

research concepts, hypothesis, and variables.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

63

CHAPTER 3 

CONCEPTS, VARIABLES, AND HYPOTHESES

3.1 Introduction

This chapter presents the general guiding framework for this research. A framework 

for examining CASE methodology support will be proposed. This framework will be 

coupled with a model for systems development, which will serve as the basis for the 

experimental study. The systems 

development model describes how 

independent variables may influence the 

outcome of systems development 

activities. Next, the dependent measure, 

and how it will be operationalized in this

study, will be described. Finally, the

. , , Figure 6 Systems Development Effort
research hypotheses will be presented. Mode| & Dexteri 19g8)

System
Requirements

Methods 
and  Tools

Personnel
Experience SoftwareEffort

3.2 A Research Model for Systems Development

A research model for studying the systems development process is given by Wrigley 

and Dexter (1987, 1988) and is presented in Figure 6. The model is derived from a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

64

collection of 74 factors, taken from five existing models, that have been found to 

affect the systems development process.11 The model presents the important classes 

of variables and their relationship to the effort required to develop a computer-based 

system. The model treats the effort required to develop a system as the consequence 

of the properties of the system being developed, the properties of the personnel 

comprising the system development team, and the methods and tools being used to 

develop the system. The model is designed to be parsimonious and offer estimations 

of effort at an early point in the systems development life cycle. The Wrigley and 

Dexter model postulates that:

1. As system requirements increase required effort will also increase.

2. For a given set of requirements, as personnel experience increases required 

effort decreases.

3. For a given set of requirements, as development technology advances required 

effort decreases (Wrigley & Dexter, 1987, p. 12).

The model described by Wrigley and Dexter was developed for the purpose of 

determining the effort required to build an information system. They acknowledge, 

however, that design quality may be a missing factor or variable. A modified version

11 The five models chosen are Walston and Felix’s (1977) IBM FSD, Putnam’s 
(1978) SLIM, Boehm’s (1981) COCOMO, Rubin’s (1983) EST1MACS, and Jones’s (1986) 
SPQR/20.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

65

of Wrigley and Dexter’s model is displayed in Figure 7.12 In this model, design 

quality is added and shown to be dependent upon the factors previously identified: 

requirements, personnel, and methods 

and tools. Wrigley and Dexter (1987) 

state, “Design quality has been largely 

ignored in all systems development 

models” (p. 9). They attribute this to 

the fact that it is assumed that the use of 

the “structured techniques and modem 

programming practices” will naturally 

lead to a quality design. Further 

justification for adding design quality to the model is provided by Wrigley and 

Dexter, who indicate that “good design quality will lead to systems which require less 

effort to implement, test, and maintain” (p. 9). The remainder of this section will 

describe the model components as they pertain to this study.13

12 A less detailed model, similar to the one displayed in Figure 7, is used by Purvis 
and Sambamurthy (1992) for the puipose of comparing systems development methodologies. 
The model presented in Figure 7 is also similar to that presented by Batra, Hoffer, & 
Bostrom (1990).

13 This study will only investigate the portion of the model concerned with 
determining the design quality of the system. Sections 6.3 and 7.4.3 discuss extensions of 
this research to the effort component of the model.

\  Focus of 
Study

System
Requirements

Effort

Personnel
Experience

Methods 
and  Tools

System

Deslc
Qua!

Figure 7 Extended Systems Development 
Effort Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

66

3.2.1 Properties of System Requirements

Among the properties of system requirements that affect design quality are the 

application domain, the number of files comprising the database, the number of 

records in the database, the number of data elements contained in the individual 

records, the number of system inputs, the number of system outputs, and the number 

of business functions to be implemented (Wrigley and Dexter, 1987). System 

requirements were controlled in this study by assigning an identical set of 

requirements for a proposed hotel information system to each project team (discussed 

in Section 4.5).

3.2.2 Properties of the Development Personnel

Among the properties of the development personnel that affect design quality are the 

amount of analysis experience for the personnel, the amount of programming 

experience, and the degree of familiarity with the application domain (Wrigley and 

Dexter, 1987). Variations in the backgrounds of the development personnel were 

controlled in this study by randomly assigning individuals to development teams 

(discussed in Section 4.4).

3.2.3 Properties of the Tools and Methods

Among the properties of the development tools and methods that affect design quality 

are the use of structured methodologies such as structured analysis, the use of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

67

software tools such as CASE, process constraints placed upon the design of the 

system, and computer access. In this study, all development teams were trained in 

the same development methodology and used a CASE tool to assist them in 

developing a system specification. Additionally, the same hardware platform was 

utilized by all teams. However, the CASE tools differed in the way they constrained 

the development teams to follow the prescribed methodology. The level of 

methodology support provided by the tools is the independent variable in this study 

and will be discussed in detail in the following section.

3.3 A Framework for Classifying CASE Methodology Support

The Vessey et al. (1992) scheme for classifying CASE methodology support, 

described in the previous chapter, is based upon work done in the area of decision 

support systems (DSS). Specifically, two attributes of a DSS, system restrictiveness 

and decisional guidance (as defined in Silver, 1988a, 1990, 1991a, 1991b), have been 

redefined and applied to CASE tools. The concepts of restricting and guiding users 

of software applications has been applied to a diverse area of applications, including 

decision support systems (Silver, 1988b), group decision support systems (DeSanctis, 

D’Onofrio, Sambamurthy, & Poole, 1989), word processing (Carroll & Carrithers, 

1984), expert systems (Carroll & McKendree, 1987), and computer-aided instruction 

(Hannafin, 1984).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

68

The remainder of this section examines the concepts of restrictiveness and guidance as 

they apply to CASE tools. By examining both restrictiveness and guidance, it will be 

possible to not only answer the question, “Does CASE tool X support methodology 

Z?”, but also, ‘To what extent does CASE tool X support methodology Z?”.

3.3.1 CASE Tool Restrictiveness

CASE tool restrictiveness may be formally defined as follows:

The degree to which and the manner in which a CASE tool limits its users’ systems 

development processes to a subset o f all possible processes (adapted from Silver,

1990).

A CASE tool may restrict both the structure of the systems development process as 

well as the execution of the systems development process (see Figure 8). The 

structure of the systems development process may be restricted by a CASE tool by 

limiting the analyst to a subset of all 

possible development activities. A 

systems development activities 

hierarchy can be constructed and 

applied to CASE tools in order to 

determine the relative level of 

restrictiveness with respect to systems

CASE Restrlctlveness

Structure Execution
of Software of Software
Development Development
Process Process

Set of Sequence Product Process
Activities ofActtvtttes
Figure 8 CASE Tool Restrictiveness 
(adapted from Silver, 1990)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

69

development activities between different CASE tools (see Figure 9). Each inner layer 

in the hierarchy is a subset of the immediate outer layer. For example, a particular 

CASE tool may support all activities 

associated with analysis, such as data 

flow diagramming, a data dictionary, 

and primitive process specifications, 

while a second CASE tool might only 

support data flow diagramming. By 

allowing an analyst to use the tool to 

only construct data flow diagrams, the 

later CASE tool is restricting the analyst

to a subset of the development activities supported by the former CASE tool.14 A 

CASE tool can also restrict the structure of the systems development process by 

imposing an order upon the activities supported by the tool. For example, a CASE 

tool may require an analyst to complete a set of data flow diagrams before beginning 

to construct a set of structure charts.

14 It should be noted that a comparison of the restrictiveness (with respect to the set 
of systems development activities supported) of two CASE tools is possible only when one 
tool’s set of supported activities is a subset of the supported activities of the second tool. See 
(Silver, 1991b, pp. 115-116) for a more thorough treatment of this topic.

WaterfallLife Cycle
Paradigm

Model
Phase

fethodology

Method

Yourdon
Structured
Analysis

Data
Flow
DiagramAnalysis

Figure 9 Restricting the Set of Systems 
Development Activities

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

70

Along with the structure of the systems development process a CASE tool may also 

restrict the execution of the systems development process. This may be accomplished 

by placing restrictions upon the procedures used to create the product of a particular 

systems development activity as well as restrictions upon the products themselves. To 

illustrate this consider Table 2, which contains a list of methodology rules for 

structured analysis. The first rule listed in Table 2 applies to the process of 

structured analysis, i.e., ensuring that the specification is constructed in a top-down 

manner. The remaining rules apply to the products of structured analysis, i.e., syntax 

rules for data flow diagrams and minispecs. The product rules can be further 

categorized as those rules that ensure the internal consistency of a product (e.g., 

ensuring that data stores are connected to processes) and those rules that ensure the 

hierarchical consistency between products (e.g., ensuring that data flows are balanced 

between levels) (Vessey et al., 1992). This study examines the effects of restricting 

the execution of the systems development process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

71

Table 2 Structured Analysis Methodology Rules

Process Rule
1. A parent process must be specified before a child process.

Product Rules
Internal Consistency 

Data Flow Diagram

2. At least one process.

3. No more than seven processes.

Context Diagram

4. Must exist.

5. Must contain only one process.

6. At least one input from an external entity and one output to an external entity.

7. The process must be numbered 0.

Process

8. At least one input data flow and one output data flow.

9. Must be connected to a data store, process, or external entity.

10. Must be labeled.

External Entity

11. Must only appear on the context diagram.

12. Must be connected to a process.

13. Must be labeled.

Data Flow

14. Must be an interface between a process and either a second process, a data 
store, or an external entity.

15. A data flow into (from) a data store must have a composition that is a subset of 
the data store’s composition.

16. Must be labeled.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

72

Table 2 (Continued)

Data Store

17. Must be an interface between two processes.

18. Must be labeled.

Hierarchical Consistency
Data Flow Diagram

19. A parent data flow diagram must exist unless it is a context diagram.

Process

20. Must decompose to either another data flow diagram or a primitive process 
specification.

21. Must be numbered with respect to its parent.

Data Flow

22. An input (output) data flow on a parent data flow diagram must appear on a 
child data flow diagram as input (output).

23. An input (output) data flow on a child data flow diagram must appear on a 
parent data flow diagram as input (output).

24. A set of data flows on a child data flow diagram that were split from a data 
flow on a parent data flow diagram must match the parent data flow’s composition.

25. A data flow must decompose to either a record definition or an element 
definition.

Data Store

26. A data store must decompose to either a file definition or a record definition. 

Primitive Process Specification

27. All inputs and outputs must match those of the corresponding primitive process 
on the data flow diagram.

28. Must be labeled with the same identifier as the corresponding primitive process 
on the data flow diagram.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

73

In order to restrict the execution of systems development, rules must be embedded 

within a CASE tool that serve to force the analyst to rigorously follow the rules of a 

chosen operator (e.g., data flow diagramming). In order to determine if a rule has 

been implemented in a restrictive fashion, three properties of the rule must be 

examined: the timing of the rule, the invocation of the rule, and the enforcement of 

the rule (see Figure 10). The next paragraph discusses these properties within the 

context of a data flow diagramming tool.

The timing of a rule refers to when a rule violation is presented to the analyst. A rule 

that is implemented in a restrictive fashion by a CASE tool will allow violations to be 

checked as soon as is feasible to do so. Restriction implies that an analyst is being 

forced to conform to the rules of the chosen operator. Therefore, it is imperative that 

the analyst be given the opportunity to fix a 

violation as soon as the violation is Rule
Tinning Violation

detected by the CASE tool in order to keep ^ —-—PJ r  Level 1 | Creation I

the violation from propagating through the Level 2 Exit/Save

Post-Method Invocation
system specification. This implies that rule |Automotic[

Request
violations must be detectable while in the

Enforcement
process of using the operator (Level 1 [Mandatory

Override

Restriction). Other rule violations may not Figure 10 Restricting the Execution of the
Systems Development Process

be detectable until the analyst is finished

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

74

using an operator (e.g., while saving and/or exiting) (Level 2 Restriction). The 

invocation of a rule refers to the mechanism by which the rule violation is presented 

to the analyst. A rule that is implemented in a restrictive fashion (Level 1 or Level 2) 

by a CASE tool will be automatically presented to the analyst as soon as it is detected 

by the CASE tool. However, it is very important that a rule violation be correctly 

distinguished from unfinished work by the analyst. For example, if an analyst tries to 

connect two data stores with a data flow then this violation may be immediately 

presented to the analyst by the CASE tool. However, if an analyst has just entered a 

new process on a diagram it would be counter-productive for the CASE tool to 

immediately stop the analyst to indicate that the process has no inflows or outflows. 

The second example is a suspected rule violation and may be flagged automatically 

but it would be more appropriate to do so at the request of the analyst. However, the 

suspected violation could be automatically presented when the analyst attempts to save 

the diagram and/or exit the diagramming tool. The enforcement of the rule refers to 

the set of options available to the analyst once a rule violation has been detected by 

the CASE tool. The analyst may be forced to correct the violation before proceeding 

further (mandatory) or the analyst may be allowed to continue working and ignore the 

error (override). In summary, a rule will be considered to be implemented within the 

CASE tool in a restrictive fashion if the analyst is automatically presented with the 

rule violation while using an operator, or while terminating use of the operator, and is 

forced to correct the violation before proceeding.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

75

3.3.2 CASE Tool Development Guidance

An alternative to restricting the structure and execution of the systems development 

process is to provide suggestions and information that serve to guide the analyst 

through the development process. CASE tool development guidance may be formally 

defined as follows:

The degree to which and the manner in which a CASE tool guides its users in 

structuring and executing the systems development process and constructing its 

resultant products, by assisting them in choosing and using its methods (adapted from 

Silver, 1990).15

A CASE tool may guide both the structure of the systems development process as 

well as the execution of the systems development process (see Figure 11). The 

structure of the systems development

process may be guided by the CASE 

tool through the use of suggestions and 

information that allow the analyst to 

choose and order the development 

techniques. For example, after 

completing a data flow diagram the

Development Guidance

Execution 
of Software 
Development 
Process

Structure 
of Software 
Development 
Process

Suggestive Informative Suggestive Informative

Figure 11 CASE Tool Development 
Guidance (adapted from Silver, 1990)

15 It should be noted that the type of guidance referred to in the definition is that 
which applies directly to the systems development process. A help screen that simply lists 
what happens when a particular key is pressed does not constitute development guidance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

76

CASE tool may suggest that the analyst begin constructing the primitive process 

specifications but offer the option of skipping directly to structure charts. In this 

instance, the analyst is not being restricted to follow a predetermined sequence of 

operations. Rather, the analyst is being presented with a logical choice of operators 

based upon the work completed to that point. An examination of the effects of guiding 

the structure of the systems development process is beyond the scope of this study.

Along with the structure of the systems development process a CASE tool may also 

guide the execution of the systems development process. This may be accomplished 

by providing the analyst with suggestions and information regarding the procedures of 

a particular systems development activity as well as the resultant product of that 

activity. Section 3.3.1 describes three properties of methodology rules embedded in a 

CASE tool: timing, invocation, and enforcement. These three properties will now be 

discussed as they pertain to providing guidance within the context of a data flow 

diagramming tool.

By definition, the word “guidance” implies the existence of an underlying choice,

i.e., a decision must be made as to whether or not to accept the guidance. The 

guidance provided by the CASE tool to the analyst must be rigorous enough to 

higlilight methodology violations when they occur yet be flexible enough so that the 

analyst can ignore the embedded advice. Two types of guidance can be made

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

77

available to the analyst by the CASE Rule 
^  Violationtool: active guidance and passive Timing

Level 1 | Creation |

guidance. Active guidance is Level 2 Exit/Save

informative and suggestive advice that Post-Metfiod Invocation
Automatic]

is unsolicited, i.e., the CASE tool Request

delivers the guidance to the analyst Enforcement
Mandatory

when the CASE tool detects a need for _  L— .
Figure 12 Active Guidance for Executing

guidance (see Figure 12). Active the Systems Development Process

guidance can be provided by the CASE tool while the analyst is using an operator 

(Level 1 Active Guidance) or it may be provided by the CASE tool when the analyst 

is finished using an operator (e.g., while saving and/or exiting) (Level 2 Active 

Guidance). The violation must be presented to the analyst in the form of an 

informative message or suggestion for correcting the violation. It is then left to the 

discretion of the analyst to determine whether or not to correct the violation. For 

example, if the analyst tries to delete an input data flow from a child diagram the 

CASE tool could immediately warn the analyst that the deletion may result in a 

methodological inconsistency. The analyst should then have the option of continuing 

or aborting the operation.

A second type of guidance available from a CASE tool is passive guidance. Passive 

guidance is informative and suggestive advice that is solicited by the analyst from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

78

CASE tool (see Figure 13). For
Rule

example, if the analyst is unsure if a Timing Violation

parent and child data flow diagram are Lovel 1 lCreqllonl ' s^ '
Exit/Save ^

balanced he can request that the CASE Level2 I*”™81** I Invocation
^ 0-y / '  Automatic

tool check the balancing and report any i c  R̂equest I
Enforcement

inconsistencies. Passive guidance may Mandalay
| Override |

be requested by the analyst from within Figure 13 Passive Guidance for Executing the
Systems Development Process

the data flow diagramming tool (Level

1 Passive Guidance) or it may be implemented as a separate function outside of the 

diagramming tool (Level 2 Passive Guidance). For example, Visible Analyst 

Workbench allows the analyst to validate work in progress by requesting a 

consistency check from within the data flow diagramming tool. Excelerator, on the 

other hand, requires the analyst to save the diagram, exit the diagramming tool, and 

then execute a separate analysis function. As with active guidance, any violations 

must be presented to the analyst in the form of informative messages or suggestions 

for correcting the violations.

The amount of guidance a CASE tool provides the analyst is a function of the 

restrictiveness of the CASE tool, i.e., a CASE tool that is minimally restrictive has 

many opportunities to provide informative and suggestive guidance to the analyst. If 

a CASE tool handles all methodology rule violations in the restrictive manner

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

79

described in Section 3.3.1 then there is no opportunity to suggest alternatives to 

working around the rule violation — the analyst must fix the violation before 

proceeding. For example, if a context diagram is required to have only one process a 

CASE tool that enforces this rule in a restrictive manner would not allow more than 

one process to be placed on the diagram. On the other hand, if a CASE tool does not 

handle rule violations in a restrictive fashion, the opportunity presents itself for the 

CASE tool to offer suggestions about the nature of the violation. Referring back to 

the context diagram example, if the CASE tool does not enforce this particular rule in 

a restrictive fashion it may simply notify the user of the existence of the violation and 

offer the analyst advice as to the consequences of placing more than one process on a 

context diagram. The analyst is then free to consider the advice as he sees fit.

An alternative to embedding restrictiveness and guidance within a CASE tool is the 

complete lack of support for a methodology or a particular methodology rule. For 

example, a CASE tool may not contain any embedded checks of the internal 

consistency of a diagram. Rather, the analyst is left with the responsibility of making 

certain the diagram adheres to the rules of the chosen methodology. In the next 

section objectives favoring greater and lesser degrees of restrictiveness of the systems 

development process will be discussed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

80

3.3.3 Objectives of Restrictiveness

Too much or too little restrictiveness may prevent an analyst from using the CASE 

tool. A CASE tool that is too restrictive may exclude an experienced analyst from 

using a preferred method of systems development (Vessey et al., 1992). The end 

result may be that the analyst will decide not to use the CASE tool. On the other 

hand, too little restriction may overwhelm an analyst by offering more options than 

the analyst may be able to handle. The end result may be that the CASE tool is not 

properly utilized.

There are several objectives that favor a high degree of CASE tool restrictiveness. A 

restrictive CASE tool can be used by an organization to prescribe a particular 

development methodology for their analysts. Rowe (1993) reports that, among 

systems analysts, CASE users are required to conform to a specific methodology 

more often than non-CASE users. Rowe also reports that CASE users have their 

development standards more rigidly enforced than non-CASE users. Alternatively, a 

restrictive CASE tool may be used to proscribe systems development techniques that 

are counter to those mandated by the organization. A restrictive CASE tool may also 

be used to provide structure to the extremely complex task of systems development 

and promote structured learning of a development methodology (adapted from Silver, 

1990).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

81

There are also objectives favoring lesser degrees of restrictiveness which must be 

considered. By offering a less restrictive CASE tool, more options are available to 

support the development of different types of information systems for use in different 

functional areas of business. Palvia and Nosek (1990) indicate that the life cycle 

paradigm is preferred for transaction processing systems and management information 

systems, while the prototyping paradigm is preferred for decision support systems and 

executive information systems. A less restrictive CASE tool may also promote 

analyst creativity and foster exploratory learning during the systems development 

process (adapted from Silver, 1990). The following section examines the two CASE 

tools used in this study, Visible Analyst Workbench 3.1 and Excelerator 1.9, and 

compares how they enforce the structured analysis development methodology.

3.3.3.1 Comparison of Two CASE Tools

Table 3 contains the results of Vessey et al.’s (1992) evaluation of the data flow 

diagramming tool for two popular CASE tools, Intersolv’s Excelerator Version 1.8 

and Visible System’s Visible Analyst Workbench (VAW) Version 3.0. The authors 

categorized Excelerator as one of the two most flexible CASE tools in their study and 

VAW as one of the two most restrictive CASE tools in their study. For the current 

study, more recent versions of the CASE tools were utilized: Excelerator 1.9 and 

Visible Analyst Workbench 3.1. Vessey et al. reported their findings based on 17 

methodology rules for data flow diagrams. The current study examines 28 rules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

82

which encompass data flow diagrams, the data dictionary, and primitive process 

specifications. The remainder of this section describes how the 28 structured analysis 

methodology rules are implemented by each CASE tool. For each CASE tool, the 28 

rules will be mapped to the methodology support spectrum introduced earlier in this 

section.

Table 3 Results of CASE Tool Evaluation (Vessey. Jarvenpaa. & Tractinskv. 19921

Total When How What

Tool Checks creation technique auto request warning

VAW 3.0

Process ( l)16 

Hier. Con. (5) 3

Int. Con. (11) 8

Excelerator 1.8

Process (1) 1

Hier. Con. (5) 1

Int. Con. (11) 5

Adapted from Vessey et al. (1992).

Before beginning a new systems development project with Excelerator 1.9 the analyst 

has the option of specifying either the Yourdon or Gane & Sarson data flow diagram 

symbol set. The symbol set may be changed at any time during the project. Visible

16 The number in parenthesis indicates the number of possible checks, i.e., there was 
one check for methodology process, there were five checks for hierarchical consistency 
between diagrams, and there were eleven checks for internal consistency within diagrams.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

83

Analyst Workbench 3.1 offers many options to the analyst before beginning a systems 

development project. First, the analyst must indicate the level of analysis support 

provided by the CASE tool. Specifically, the analyst may indicate whether or not the 

methodology enforcement described above will be utilized for the project. The 

analyst may disable all methodology rules or choose a particular implementation of 

structured analysis, either Yourdon or Gane & Sarson. The only difference between 

the implementations, as far as VAW is concerned, is the symbol set. Regardless of 

the implementation chosen, the analyst may use diagramming symbols from either 

Yourdon or Gane & Sarson. However, if rules are “enabled” they will only apply to 

the symbols from the chosen set. Similarly, only symbols from the enabled set may 

be described in the data dictionary. For example, if the analyst chooses to enable 

Yourdon rules he may also use Gane & Sarson symbols in the data flow diagrams.

The methodology rules and the data dictionary, however, will only apply to those 

diagram symbols that are from the Yourdon set. The analyst may also specify 

whether or not the CASE tool automatically prompts the analyst to label both data 

flows and symbols. The analyst also has the option of enabling the data dictionary 

for the project. The data dictionary may only be utilized if methodology rules are 

being used. These parameters may not be changed once a project has begun.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

84

Process Rule

1. A parent process must be specified before a child process.

Visible Analyst Workbench 3.1 — In VAW, a process does not need a parent process 

to exist. Data flow diagram hierarchy is represented to the analyst via a project tree. 

Nodes may be inserted anywhere within the tree and then linked to a child diagram if 

desired. The analysis report contains a listing of all diagrams (and, therefore, all 

processes) that do not have a parent. This report may be generated at the request of 

the analyst from within the data flow diagramming tool. However, it should be noted 

that the absence of a parent process does not necessarily imply that the parent did not 

exist at one time and that it was not created before its child.

Excelerator 1.9 — In Excelerator, a process does not need a parent process to exist. 

Data flow diagrams may be created in any order desired and then linked together after 

they have been created. The analyst has no way of determining which processes do 

not have a parent as all reports indicate downward decomposition only.

Product Rules (Internal Consistency)

2. A data flow diagram must have at least one process.

Visible Analyst Workbench 3.1 — With the exception of the context diagram, this rule 

is not implemented by VAW.

Excelerator 1.9 — Violations of this rule are indicated to the analyst in the “Data 

Flow Diagram Verification Report.” This report may be generated at the request of 

the analyst from outside the data flow diagramming tool.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

85

3. A data flow diagram must have no more than seven processes.

Visible Analyst Workbench 3.1 — This rule is not implemented by VAW.

Excelerator 1.9 — This rule is not implemented by Excelerator.

4. A context diagram must exist.

Visible Analyst Workbench 3.1 — When using the Yourdon methodology rules, VAW 

asks the analyst at the beginning of the project if a context diagram will be used. The 

analyst has the option of accepting or rejecting a context diagram.

Excelerator 1.9 — While the Excelerator documentation does indicate that a context 

diagram is the top-level of a data flow diagram set, Excelerator makes no provision 

for assigning one of the diagrams to be a context diagram.

5. The context diagram must contain only one process.

Visible Analyst Workbench 3.1 -  Once a process has been placed on the context 

diagram, VAW disables the use of the process symbol for that diagram. VAW 

enforces the requirement of having a process on the context diagram by not allowing 

the diagram to be saved until a process is placed on the diagram.

Excelerator 1.9 — Excelerator does not recognize the concept of a context diagram.

6. The context diagram must contain at least one input from an external entity 

and one output to an external entity.

Visible Analyst Workbench 3.1 -- This rule is not implemented by VAW.

Excelerator 1.9 — Excelerator does not recognize the concept of a context diagram.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

86

7. The context diagram process must be numbered zero (0).

Visible Analyst Workbench 3.1 — The process is automatically numbered zero by 

VAW and may not be changed.

Excelerator 1.9 — Excelerator does not recognize the concept of a context diagram.

8. A process must have at least one input data flow and one output data flow. 

Visible Analyst Workbench 3.1 — The analysis report contains a listing of processes 

that are either “input only” or “output only.” This report may be generated at the 

request of the analyst from within the data flow diagramming tool.

Excelerator 1.9 — Violations of this rule are indicated to the analyst in the “Data 

Flow Diagram Verification Report. ” This report may be generated at the request of 

the analyst from outside the data flow diagramming tool.

9. A process must be connected to at least one of the following: data store, 

process, external entity.

Visible Analyst Workbench 3.1 — The analysis report contains a listing of processes 

that are freestanding. This report may be generated at the request of the analyst from 

within the data flow diagramming tool.

Excelerator 1.9 — Freestanding or self-connected processes are indicated to the 

analyst in the “Data Flow Diagram Verification Report. ” This report may be 

generated at the request of the analyst from outside the data flow diagramming tool.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

87

10. A process must be labeled.

Visible Analyst Workbench 3.1 — When a process is created the user is automatically 

prompted to enter a label. However, the user may override this prompt if desired.

The analysis report contains a listing of processes that are unlabeled. This report may 

be generated at the request of the analyst from within the data flow diagramming tool. 

Excelerator 1.9 — Labels may be assigned to processes from within the data flow 

diagramming tool or the data dictionary. The data dictionary is accessible from within 

the data flow diagramming tool. Once a label has been entered the analyst has the 

option of displaying or not displaying the label on the diagram. Violations of this 

rule are indicated to the analyst in the “Undescribed Graph Entities Report. ” This 

report may be generated at the request of the analyst from outside the data flow 

diagramming tool.

11. An external entity must appear for the first time on the context diagram.

Visible Analyst Workbench 3.1 — An external entity may be drawn on any diagram 

and the data flow it receives or produces is considered a “net input (output)” data 

flow. If the entity is appearing for the first time in the diagram set (but not on the 

context diagram) the data flow will be indicated in the analysis report as being 

inconsistent with the data flows on the context diagram. This report may be 

generated at the request of the analyst from within the data flow diagramming tool.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

88

Excelerator 1.9 — Excelerator does not recognize the concept of a context diagram.

An external entity may appear on any diagram. Data flows into or out of the external 

entity (net input or net output) are treated the same as any other data flow.

12. An external entity must be connected to a process.

Visible Analyst Workbench 3.1 -  The analysis report contains a listing of external 

entities that are freestanding or are not connected to a process. This report may be 

generated at the request of the analyst from within the data flow diagramming tool. 

Excelerator 1.9 — Freestanding or self-connected external entities are indicated to the 

analyst in the “Data Flow Diagram Verification Report.” This report may be 

generated at the request of the analyst from outside the data flow diagramming tool. 

There is nothing implemented by Excelerator that would stop an analyst from 

connecting an external entity to a data store.

13. An external entity must be labeled.

Visible Analyst Workbench 3.1 -  When an external entity is created the user is 

automatically prompted to enter a label. However, the user may override this prompt 

if desired. The analysis report contains a listing of external entities that are 

unlabeled. This report may be generated at the request of the analyst from within the 

data flow diagramming tool.

Excelerator 1.9 — Labels may be assigned to external entities from within the data 

flow diagramming tool or the data dictionary. The data dictionary is accessible from 

within the data flow diagramming tool. External entities also have an identification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

89

tag, which is used by the data dictionary. The analyst is prompted to enter an 

identifier before describing the external entity for the first time in the data dictionary. 

If a label already exists, the analyst has the option of using the label as the identifier. 

The analyst has the option of displaying or not displaying both the label and the 

identifier on the diagram. Violations of this rule are indicated to the analyst in the 

“Undescribed Graph Entities Report.” This report may be generated at the request of 

the analyst from within the data flow diagramming tool.

14. A data flow must be an interface between a process and either a second 

process, a data store, or an external entity.

Visible Analyst Workbench 3.1 — Data flows that are not connected at one end to a 

process are indicated in the analysis report. Data flows that are connected at only one 

end point are assumed to be input (output) from the parent diagram and, if they do 

not match with the parent diagram, will be indicated in the analysis report as 

inconsistent data flows. This report may be generated at the request of the analyst 

from within the data flow diagramming tool.

Excelerator 1.9 — Data flows are defined by the analyst by selecting two objects to 

connect. Therefore, there cannot be any freestanding data flows. Data flowing 

between two data stores or two external entities is reported to the analyst in the “Data 

Flow Diagram Verification Report”. This report may be generated at the request of 

the analyst from outside the data flow diagramming tool.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

90

15. A data flow into (from) a data store must have a composition that is a subset 

of the data store’s composition.

Visible Analyst Workbench 3.1 — While the VAW dictionary allows the analyst to 

specify the composition of the both data flows and data stores, there is no check 

performed on the data flows and data stores to ensure a subset relationship exists. 

Excelerator 1.9 -  Violations of this rule are indicated to the analyst in the “Data 

Flow Diagram Verification Report”. This report may be generated at the request of 

the analyst from outside the data flow diagramming tool.

16. A data flow must be labeled.

Visible Analyst Workbench 3.1 — When a data flow is created the user is 

automatically prompted to enter a label. However, the user may override this prompt 

if desired. The analysis report contains a listing of data flows that are unlabeled.

This report may be generated at the request of the analyst from within the data flow 

diagramming tool.

Excelerator 1.9 — Labels may be assigned to data flows from within the data flow 

diagramming tool or the data dictionary. The data dictionary is accessible from within 

the data flow diagramming tool. Data flows also have an identification tag, which is 

used by the data dictionary. The analyst is prompted to enter an identifier before 

describing the data flow for the first time in the data dictionary. If a label already 

exists, the analyst has the option of using the label as the identifier. The analyst has 

the option of displaying or not displaying both the label and the identifier on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

91

diagram. Violations of this rule are indicated to the analyst in the “Undescribed 

Graph Entities Report. ” This report may be generated at the request of the analyst 

from outside the data flow diagramming tool.

17. A data store can only exist as an interface between two processes.

Visible Analyst Workbench 3.1 — If a data store exists with only input (output) the 

data flow is presumed to be a net input (output) from the parent diagram. If the 

flows do not match with the parent diagram they will be indicated in the analysis 

report as inconsistent data flows. The analysis report also indicates freestanding data 

stores. This report may be generated at the request of the analyst from within the 

data flow diagramming tool.

Excelerator 1.9 — In Excelerator a data store must be connected to at least one 

process. Violations of this rule are indicated to the analyst in the “Data Flow 

Diagram Verification” report. A freestanding data store will also be indicated in this 

report. This report may be generated at the request of the analyst from outside the 

data flow diagramming tool. There is nothing implemented by Excelerator that would 

indicate a data store that provides solely input or output and should, therefore, be 

represented as an external entity.

18. A data store must be labeled.

Visible Analyst Workbench 3.1 — When a data store is created the user is 

automatically prompted to enter a label. However, the user may override this prompt 

if desired. The analysis report contains a listing of data stores that are unlabeled.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

92

This report may be generated at the request of the analyst from within the data flow 

diagramming tool.

Excelerator 1.9 -  Labels may be assigned to data stores from within the data flow 

diagramming tool or the data dictionary. The data dictionary is accessible from within 

the data flow diagramming tool. Data stores also have an identification tag, which is 

used by the data dictionary. The analyst is prompted to enter an identifier before 

describing the data store for the first time in the data dictionary. If a label already 

exists, the analyst has the option of using the label as the identifier. The analyst has 

the option of displaying or not displaying both the label and the identifier on the 

diagram. Violations of this rule are indicated to the analyst in the “Undescribed 

Graph Entities Report. ” This report may be generated at the request of the analyst 

from outside the data flow diagramming tool.

Product Rules (Hierarchical Consistency)

19. A parent data flow diagram must exist unless it is a context diagram.

Visible Analyst Workbench 3.1 — In VAW, a diagram may be created as a node 

anywhere within the data flow diagram hierarchy. However, a parent-child 

relationship does not have to exist between diagrams. The analysis report contains a 

listing of diagrams that do not have a parent. This report may be generated at the 

request of the analyst from within the data flow diagramming tool. Additionally, no 

diagram may be placed above a context diagram.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

93

Excelerator 1.9 — This rule is not enforced by the CASE tool. Data flow diagrams 

may be created and linked in any order the analyst desires. Alternatively, the analyst 

is not required by Excelerator to link the diagrams.

20. A process must decompose to either another data flow diagram or a primitive 

process specification.

Visible Analyst Workbench 3.1 -  This rule is not implemented by VAW. In order to 

determine if processes have been fully decomposed the analyst must browse the data 

dictionary and examine each process for its level of decomposition.

Excelerator 1.9 -  A “Graph Explosion Report”, which lists the decomposition of 

objects on a specified list of data flow diagrams, may be generated at the request of 

the analyst from outside the data flow diagramming tool. All undefined process 

decompositions are indicated in this report.

21. A process must be numbered with respect to its parent.

Visible Analyst Workbench 3.1 -  A  process is automatically numbered with respect to 

its parent when it is created. However, the analyst may later change the assigned 

numbering by using a text editing function within the data flow diagramming tool.

All processes must have a number but they do not have to be numbered with respect 

to their parents.

Excelerator 1.9 — When the analyst describes a process in the data dictionary for the 

first time, Excelerator requires the analyst to input a process identifier. Excelerator 

provides a default identifier which is numbered with respect to the parent process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

94

The analyst may use the default value or provide a new identifier. While the 

prompting for the identifier is automatic and may be overridden, the prompt only 

occurs as a result of attempting to put a process in the dictionary. If the process is 

never placed in the dictionary it will never be numbered. Violations of this rule are 

indicated to the analyst in the “Undescribed Graph Entities Report.” This report may 

be generated at the request of the analyst from outside the data flow diagramming 

tool.

22. An input (output) data flow on a parent data flow diagram must appear on a 

child data flow diagram as input (output).

Visible Analyst Workbench 3.1 — Violations of this rule are indicated to the analyst in 

the analysis report. This report may be generated at the request of the analyst from 

within the data flow diagramming tool. When a process is decomposed, all input and 

output data flows are carried down to the new diagram. There is nothing to stop the 

analyst from deleting these data flows.

Excelerator 1.9 — Violations of this rule are indicated to the analyst in the “Level 

Balancing Report”. This report may be generated at the request of the analyst from 

outside the data flow diagramming tool. When a process is decomposed, all input and 

output data flows are carried down to the new diagram. There is nothing to stop the 

analyst from deleting these data flows.

23. An input (output) data flow on a child data flow diagram must appear on a 

parent data flow diagram as input (output).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

95

Visible Analyst Workbench 3.1 — Violations of this rule are indicated to the analyst in 

the analysis report. This report may be generated at the request of the analyst from 

within the data flow diagramming tool. When a process is decomposed, all input and 

output data flows are carried down to the new diagram. There is nothing to stop the 

analyst from adding more input (output) data flows.

Excelerator 1.9 — Violations of this rule are indicated to the analyst in the “Level 

Balancing”. This report may be generated at the request of the analyst from outside 

the data flow diagramming tool. When a process is decomposed, all input and output 

data flows are carried down to the new diagram. There is nothing to stop the analyst 

from adding more input (output) data flows.

24. A set of input data flows on a child data flow diagram that were split from a 

data flow on a parent data flow diagram must match the parent data flow’s 

composition.

Visible Analyst Workbench 3.1 — Split data flows are supported by VAW. If any 

inputs that were split from a data flow on a parent diagram are not found this will be 

indicated in the analysis report. This report may be generated at the request of the 

analyst from outside the data flow diagramming tool.

Excelerator 1.9 — Excelerator does not support split data flows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

96

25. A data flow must decompose to either a record definition or an element 

definition.

Visible Analyst Workbench 3.1 — This rule is not implemented by VAW. The 

composition of a data flow can be indicated from within the data dictionary.

However, there is no report available that indicates which flows have yet to be 

decomposed. In order to determine if all data flows have been decomposed the 

analyst must browse the data dictionary and examine each data flow’s composition 

field.

Excelerator 1.9 — A “Graph Explosion Report”, which lists the decomposition of 

objects on a specified list of data flow diagrams, may be generated at the request of 

the analyst from outside the data flow diagramming tool. All undefined data flow 

decompositions are indicated in this report.

26. A data store must decompose to either a file definition or a record definition.

Visible Analyst Workbench 3.1 — This rule is not implemented by VAW. The 

composition of a data store can be indicated from within the data dictionary.

However, there is no report available that indicates which stores have yet to be 

decomposed. In order to determine if all data stores have been decomposed the 

analyst must browse the data dictionary and examine each data store’s composition 

field.

Excelerator 1.9 — A “Graph Explosion Report” , which lists the decomposition of 

objects on a specified list of data flow diagrams, may be generated at the request of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

97

the analyst from outside the data flow diagramming tool. All undefined data store 

decompositions are indicated in this report.

27. All inputs and outputs of a primitive process specification must match those 

of the corresponding parent process on the data flow diagram.

Visible Analyst Workbench 3.1 — A primitive process specification may be entered as 

an attribute of the corresponding process entry in the data dictionary. Listed 

immediately below the primitive process specification are the inputs and outputs to the 

process. However, there is no way of verifying if inputs and outputs from the parent 

process are present in the primitive process specification.

Excelerator 1.9 — When a primitive process specification is created from a parent 

process the inputs and outputs are not carried down from the process to the primitive 

process specification. Violations of this rule are indicated to the analyst in the “Level 

Balancing” report. This report may be generated at the request of the analyst from 

outside the data flow diagramming tool.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

98

28. A primitive process specification must be labeled with the same identifier as 

the corresponding primitive process on the data flow diagram.

Visible Analyst Workbench 3.1 — A primitive process specification is an attribute of a 

process as is the label of the process. Therefore, the name of the process and the 

name of the primitive process specification are automatically the same.

Excelerator 1.9 — When defining a decomposition path from a process to a primitive 

process specification the analyst may use any label desired.

The implementation of the methodology rules employed by Visible Analyst 

Workbench 3.1 and Excelerator 1.9 are summarized in Tables 4 and 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

99

Table 4 Summary of Visible Analyst Workbench 3.1 Methodology Enforcement

During Creation During Exit/Save Post

Automatic On Automatic On No

Rule tt Mandatory Override Request Mandatory Override Request Enforcement

1
iZWzWMiStXtV:

2 ■■fMffMzfrj!.
3 wmmmm
4

5

■m

6

7 •

8 isisiiii
9 liiiiii
10 ■HUH
11

12

13 'v,'c.
14

15
wmmmmm.

16 ...............
17

18

19 mmmmm
20

21

22

23 - ‘ v; /
24 i m

25

26 ilii§l§l
27

28 M—
Level 1 Level 1 Level 1 Level 2 Level 2 Level 2 No

Restriction Active

Guidance

Passive

Guidance

Restriction Active

Guidance

Passive

Guidance

Enforcement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

100

Table 5 Summary of Excelerator 1.9 Methodology Enforcement

During Creation During Exit/Save Post-Method

Automatic On Automatic On No

Rule # Mandatory Override Request Mandatory Override Request Enforcement

1

2

3

4 a i l i i
5

6

7

8 > /  { V .  '

9

10 -'SWi/ J 'kV;,
11 H H

■ m i ™

12*

13

14

15
,„m^«nnpn

16

17*

18

19

20

21

22

23 S M i i i t a
24 '

25 l|illtlfl|j|||fi
26

27

28 M U ! ®

Level 1 Level 1 Level 1 Level 2 Level 2 Level 2 No

Restriction Active Passive Restriction Active Passive Enforcement

Guidance Guidance Guidance Guidance

* Special cases o f this violation may not be detected by Excelerator 1.9. '  Excelerator 1.9 does not support split data flows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

101

From Tables 4 and 5 it can be seen that the two CASE tools are quite different in 

their approach to enforcing the structured analysis methodology rules. In fact, the 

intersection of the rule bases of the two CASE tools contains only two rules (#3, #6) 

that are enforced in an identical fashion. It can also be noted from Tables 4 and 5 

that it is inappropriate to apply a label such as “restrictive” or “guided” to either of 

these CASE tools. VAW implements only 10.7% (3 of 28) of the rules in a 

restrictive fashion, 60.7% (17 of 28) are implemented in a guided fashion (Level 1 

Active and Level 1 Passive Guidance), and the remaining 28.6% (8 of 28) of the 

rules are not implemented. Excelerator implements 64.3% (18 of 28) of the rules in 

a guided fashion (Level 2 Passive Guidance) and the remaining 35.7% (10 of 28) of 

the rules are not implemented. While both CASE tools claim to support Yourdon 

structured analysis it is clear that their respective implementations of the methodology 

are quite different.

In this section a method has been described for classifying CASE methodology 

support at the level of the individual methodology rules. The following section 

describes how methodology consistency has been operationalized in previous studies 

and how the classification introduced in this section will be used to operationalize 

methodology consistency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

102

3.4 Research Variable: Methodology Consistency

The term “quality” as it applies to systems and software is too high-level to be 

meaningful or measured directly. By focusing on the user view of the system, key 

attributes of quality (quality factors) have been identified. Like quality itself, these 

factors are too high-level to have meaning and have been further decomposed into 

quality criteria. These quality criteria have been associated with a set of directly 

measurable attributes called quality metrics (Fenton, 1991).

One of the criteria identified as having an effect on several of the quality factors is 

consistency. “Consistency provides uniform design, code, and test techniques, as 

well as uniform system documentation. Standards for design techniques, coding, 

naming, and documentation all serve to improve consistency” (Arthur, 1985, p. 132). 

The consistent use of a design methodology improves the comprehension of the 

system by both the developers and the users by providing a common language for the 

duration of the project. Flexibility, i.e., the ability to make enhancements to the 

system, is improved when a consistent set of standards are applied to the systems 

development project. Maintainability, i.e., the ability to fix errors, will also be 

enhanced through the use of uniform development techniques. Finally, system 

reliability, i.e., the extent to which the system performs without failure, is improved 

by adhering to an agreed upon set of design standards (Arthur, 1985).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

103

System specification (primarily data flow diagrams) quality has been assessed in 

various ways in previous empirical research. Baram et al. (1990) analyzed data flow 

diagrams for their correctness, completeness, balance, and readability. Correctness 

and balance were measured by counting errors within the data flow diagrams. Yellen 

(1990) analyzed data flow diagrams and the accompanying data dictionary for 

correctness, completeness, and communicability. Yellen defined correctness to be 

“conformity to rules of data flow diagramming construction” (p. 501). Correctness 

was measured by evaluating the diagrams against eight criteria.17 A weight was 

assigned to each criteria in order to reflect the relative importance of the criteria. For 

each criteria, a score was assigned between zero and 100. A total score for 

correctness was obtained by summing the weighted scores for each criteria. Finally, 

Frolick et al. (1993) examined data flow diagrams for “overall system quality”. The 

criteria used to evaluate quality were completeness, clarity, simplicity, technical 

accuracy, and naming accuracy. Each criteria was assigned an integer value between 

one and seven. A quality score was reached by taking the mean of the scores 

received for the five criteria. Scores for each of the quality criteria were not 

reported. In this study, consistency will be measured with respect to the 28 

methodology rules previously defined. Specifically, consistency will be

17 The eight criteria roughly correspond to nine of the structured analysis methodology 
rules listed in Table 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

104

operationalized by counting the number of violations of each rule per system 

specification.

3.5 Research Hypotheses

The process of top-down design dictates that the system components are continuously 

specified in increasing levels of detail. A methodology rule violation that is not 

immediately presented to the analyst may propagate through the system specification, 

leading to errors that may not be detected until later phases of the life cycle.

Therefore, it is important for an error to be detected by the CASE tool and presented 

to the analyst as soon as it is feasible to do so.

Hypothesis 1: For a given methodology rule, the number o f violations encountered in 

the system specification will increase as the rule implementation mechanism moves 

from left to right on the methodology support spectrum.

The corresponding null hypothesis is given as

Hypothesis lp  There will be no difference in the number o f violations o f a given 

methodology rule between two CASE tools that utilize the same mechanism (relative to 

the methodology support spectrum) to support the rule.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

105

Specification consistency has been measured and reported in two of the three cited 

studies of specification quality. In both instances, specifications produced with the 

aid of a CASE tool, and its accompanying methodology support, were found to be 

more methodologically consistent than specifications produced without the aid of a 

CASE tool, i.e., manually.

Hypothesis la: A methodology rule violation will be encountered less frequently in 

the system specification i f  the rule is supported by a CASE tool than i f  it is not 

supported by a CASE tool.

In summary, it has been proposed that a comparison of methodology support is 

inappropriate if done at the level of the CASE tool. This is due to the fact that, 

within a particular CASE tool, the level of support varies from rule to rule. Instead, 

methodology support will be examined at the level of the individual rules. It is 

anticipated that a rule implemented in a more restrictive manner will be violated less 

frequently than a rule implemented in a less restrictive manner.

3.6 Summary

This chapter presented the overarching research model, the research concepts, and 

hypotheses. A model was introduced that described the relationship between the 

independent and dependent variables in the systems development process. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

106

dependent measure was defined and hypotheses were presented which predict the 

effects of methodology support on system specification quality. Chapter 4 presents 

the research methodology for this study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 4 

METHODOLOGY

107

4.1 Introduction

This chapter presents the research methodology used in this study. First, the 

independent and dependent variables will be defined. The second section describes 

the research design employed in this study. Subsequent sections present the subjects, 

task, setting, and procedures.

4.2 Variables

The independent, dependent, and control variables in this study are all derived from 

the systems development research model presented earlier and will be explained in 

this section.

4.2.1 Independent Variable

The independent variable in this study is the level of methodology support provided 

by the CASE tool for a particular rule. Support for a methodology rule is an inherent 

characteristic of the CASE tool and, therefore, can not be directly manipulated. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

108

28 methodology rules are listed in Table 2 and the support for the rules provided by 

the CASE tools is described in Section 3.3.3.1.

4.2.2 Control Variables

In this study the systems requirements were controlled by requiring the project teams 

to use an identical set of requirements. Personnel experience was controlled by 

offering subjects a common training experience in the development methodology. A 

survey of subjects revealed a common background in information systems-related 

experience. Project teams were required to use Yourdon structured analysis to 

develop their system specification.

4.2.3 Dependent Variable

The dependent variable, methodology correctness, can be defined as the degree to 

which the system specification adheres to the rules of the chosen methodology. For 

each project, a complete set of analysis reports was generated and errors were noted 

from the reports. For those rules that were not implemented by the CASE tools, the 

system specification was manually verified. Two reviewers each evaluated half of the 

specifications. Errors attributed to not following the methodology were noted by the 

reviewers. A third reviewer verified the work of the first two evaluators and 

tabulated the errors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

109

4.3 Experimental Design

This research was conducted using a replicated project study. Replicated project 

studies examine objects across a set of teams and a single project (Basili, Selby, & 

Hutchens, 1986). Figure 14 illustrates the study. Sixteen four-person project teams 

analyzed a hotel information system.

Eight of the teams used Excelerator 1.9 

while the remaining eight teams used 

Visible Analyst Workbench 3.1.

i—

Pro|ectAwth
CASE
to o ltl

Projoot A 
wWi 
CASE 
tool #2

4.4 Subjects

Moher and Schneider (1982) list seven
Figure 14 Research Design -  Replicated 

subject characteristics that are of interest Project Study

to the software engineering experimenter. These qualities are divided into two

classes: those that are independent of systems development experience, and those that

relate directly to systems development. Those characteristics that are independent of

systems development experience include physical characteristics, intelligence, and

level of education. Those characteristics of systems development experience include

aptitude, skill, experience, and level of training.

Subjects were upper-division students (second-semester juniors or first-semester 

seniors) majoring in Management Information Systems and registered in an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

110

introductory systems analysis and design course. Prior to enrolling in this course, 

subjects have completed course work in business programming, data structures, and 

telecommunications. Additionally, subjects were required to be concurrently 

registered in a database design course.

A stratified random sample was originally planned in order to determine if differences 

existed in subjects’ preparation coming into the systems analysis and design course.

An extensive survey was given to the subjects (see Appendix A) requesting 

information regarding previous experience in the field of systems analysis, use of 

CASE tools, academic background, and so on. Results of this survey indicated that 

none of the subjects had any prior knowledge, through course work or experience in 

the professional world, with systems analysis and design or CASE tools. In light of 

this, a random sampling procedure was employed to assign subjects to groups. In 

order to avoid group attrition, the group assignments were not made until after the 

“midterm” examination and university “free drop” date.

After the groups were assigned, but before the project was assigned, groups were 

required to participate in group dynamics exercises in order to familiarize themselves 

with each other’s personal qualities and academic strengths and weaknesses. As 

incentive to perform well on the project, 25 percent of the subjects’ semester course 

grade was based upon the project deliverables. In order to discourage free-riding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

I l l

during the course of the project, subjects were told they would be submitting a post- 

project evaluation (read only by the instructor) of their group members’ individual 

contributions to the project. This evaluation would be factored into the final project 

grade.

4.5 Experimental Task

Before receiving the requirements specification, each group was required to visit a 

local hotel (each group chose a different hotel) in order to familiarize themselves with 

the application domain. A 1985 study by Adelson and Soloway indicates that analysts 

with experience in the task domain are better equipped to creatively integrate 

material. A set of questions regarding hotel information systems was provided to 

each group. Appointments were set up with the hotels, on-site interviews were 

conducted with information systems managers and users, and the results were 

presented in a report.

After presenting the findings from the hotel interviews each of the project teams 

received an identical requirements specification for a proposed hotel information 

system (see Appendix B). Brooks (1980) states that an experimental task used in 

software engineering research must be of an appropriate level of difficulty.

Therefore, the hotel information system specification was derived both from a 

textbook (not available to the subjects) case study (Whitten, Bentley, & Barlow, 1989)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

112

suitable for an academic project and an IBM case study (International Business 

Machines, 1990) used to train employees in Joint Application Design (JAD) sessions. 

Required deliverables and due dates were clearly stated in the requirements 

specification. Required deliverables included a complete set of data flow diagrams, 

primitive process specifications, structure charts, and a data dictionary.

4.6 Experimental Setting

Moher and Schneider (1982) provide several categories of environmental 

characteristics that must be considered when performing experimental research in 

software engineering. These categories include characteristics of the training, aid and 

reference materials, and the physical environment. The rest of this section describes 

the experimental setting used in this study.

4.6.1 Training

The literature on CASE tool adoption suggests that users should be familiar with the 

development methodology before using the CASE tool (Alavi, 1993; Kemerer, 1992; 

Loy, 1993). Before the project and group assignments were made, all subjects 

received approximately 2 months (1 hour per day, 3 times per week) of instruction in 

information systems development, with a heavy emphasis on information systems 

analysis and, in particular, Yourdon structured analysis and design. To accompany

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

113

their instruction in structured analysis, subjects were required to complete pencil-and- 

paper exercises in the Yourdon method.

Before the project groups were assigned to a CASE tool, subjects received 

background material regarding CASE tools and how CASE is used to support 

information systems development. This material was in the form of lecture notes 

dealing with the concept of CASE as well as case studies of organizations that have 

successfully used CASE as a systems development aid. As soon as the CASE tools 

were assigned, subjects received a demonstration of their assigned tool. Omar (1992) 

shows that a demonstration of CASE tools has a positive impact on learning and 

understanding information systems and CASE tools. The demonstration of the tool 

consisted of preliminary details such as how to login and logoff the tool, followed by 

a detailed look at the functional areas of the tool that would be used to support the 

development of the system specification, including the graphics tool (for drawing data 

flow diagrams and structure charts), the analysis facility (for checking the 

completeness and correctness of the specification), and the data dictionary. In order 

to eliminate the steep learning curve frequently associated with CASE tools 

(Burkhard, 1989; Jankowski & Norman, 1992; Slusky, 1989), subjects were required 

to complete previously assigned pencil-and-paper exercises with the use of their 

CASE tool. To assure that subjects were adequately exposed to their group’s CASE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

114

tool, the replication of the pencil-and-paper exercises was made an individual 

assignment.

4.6.2 Reference Materials

To assist the groups in the completion of the project, several aids and reference 

materials were made available. After seeing a demonstration of their assigned CASE 

tool, groups were provided with a third-party manual and tutorial for their product 

(Schmidt, 1992; Wenig, 1991). Subjects also had access to vendor-supplied 

documentation and tutorials. To provide additional support, a “CASE tool expert” 

was available to the students for approximately fifteen hours per week.

4.6.3 Software

Eight of the sixteen groups were assigned to Visible Analyst Workbench 3.1 while the 

remaining eight groups were assigned to Excelerator 1.9. Before the projects were 

assigned to the groups the CASE tools were initialized by the “CASE tool expert”. 

Visible Analyst Workbench was initialized to support the Yourdon structured analysis 

rules, the data dictionary, and automatic labeling of symbols and flows. Excelerator 

was initialized with the Yourdon data flow diagram symbol set. Both CASE tools 

support the analysis and design phases of the life cycle and the accompanying 

techniques necessary to complete a system specification. Each tool uses a graphical 

user interface that relies extensively on a mouse for input (see Figure 15).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Differences between the CASE tools as they relate to this study are described in

115

Section 3.3.3.1. a1 4 1 s i  ?  71

V ISIBLE SVSTEHS EDUCATIONAL/TRAINING VERSION

S o u rc e -D a ta

r SuHHaryC o n t r o l - D a t a P r o c e s s

SYNBO LS
L IN E S

CJ1STRC7
n o u E
DELETE
S P L IT
S T Y L IZ E
COPY
PAN
ZOCH
ANALYZE
D E F IN E
P R IN T
REDRAU
N E ST
PAGE
GOTO
SAUE
S TA TU S
SE T U P
ERASE

SE L E C T  O P T I O N . . ( L ) C A N C E L ..C D )

32353
CONNECT 
INTRFACE 
LABEL 
DESCRIBE 
EXPLODE 
MOUE 
DELETE
copy
ZOOM 
TEXT 
TXT BLK 
LINE 
SCALE 
PROFILE UIEW 
PRINT 
OTHER 
EXIT
PROciss 

■X-ENTITV 
DAT STOR 
CTL TRN 
CTL STOR 
OFFPAGE

Figure 15 User Interface for YAW 3.1 (top) and Excelerator 1.9 (bottom)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4.6.4 Hardware

CASE tool usage occurred in a microcomputer laboratory dedicated to systems 

analysis and design courses. Each group was assigned a particular computer for the 

duration of the project. Computers were AT&T 6312 WGS workstations with 1Mb 

of RAM, a 68Mb hard disk, EGA monitor, and mouse. Each computer was 

connected to an IBM Graphics compatible Okidata line printer. Both CASE tools 

were fully compatible with the chosen hardware platform. Groups were assigned 

times during the week in which they could use the computer. Each group was given 

approximately 30 hours of CASE tool access time per week. Lab access time was 

between the hours of 9 a.m. and 8 p.m., Sunday through Saturday. Lab time was 

scheduled in multiple hour blocks on random days with the schedule changing each 

week to assure equal access for all groups.

4.7 Experimental Procedures

After becoming familiar with the application domain and the CASE tools (described 

above), the project was assigned. All deliverables, due dates, and grading criteria 

were discussed with the groups. Project deliverables were graded on the following 

criteria: 1) Were the system requirements satisfied? 2) Was the CASE tool output 

presentable? and 3) Were the project deliverables logically organized for submission 

to a hypothetical programmer? (It should be noted that, while methodology adherence 

was a stated grading criteria, in order to avoid penalizing the users of a particular

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

117

CASE tool, methodology adherence was not used as a grading criteria for the 

projects. However, during their methodology training, the subjects were versed in 

the importance of methodologically correct specifications. Further, groups received 

training in how to properly check their specifications for methodology correctness.).

As part of the project deliverables, and to assure that adequate progress was being 

made by each group, the groups were required to submit weekly logs describing their 

CASE tool usage. Specifically, the groups were asked to discuss the functional areas 

of the system they had worked with as well as the CASE tool components used to 

assist in the analysis of the functional area. Besides describing their work, the groups 

were also required to record the amount of time spent in each functional area of the 

CASE tool (graphics, analysis, data dictionary, etc.) each time they used the CASE 

tool. In order to verify the usage logs, the groups were required to submit their 

project data dictionary (on a computer diskette) along with the usage logs.

At the end of the semester, each group was required to submit a project notebook.

This notebook contained an executive summary of the hotel information system as 

well as a complete set of analysis and design specifications. An oral presentation of 

the system was also required. After all deliverables had been received, each subject 

was required to fill out a subjective questionnaire regarding their CASE tool. Elapsed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

118

time between the assignment of the project and the presentation of the deliverables 

was approximately two months.

4.8 Summary

This chapter described the research methodology employed for this study.

Independent variables, and how they were controlled and manipulated, were 

introduced first, followed by the dependent variable and how it was measured. The 

research design, subjects, task, setting, and procedures were also detailed. Chapter 5 

presents the results of the field experiment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 5 

RESULTS

119

5.1 Introduction

This chapter presents the results of the statistical analysis of the data collected in the 

field experiment described in Chapter 4. The statistical method used to analyze the 

project data was a one-way analysis of variance (ANOVA) performed in SPSS for 

Windows (Base System, Release 6.0). The following section presents summary 

statistics for the projects. Next, the results of the dependent measure (methodology 

correctness) described in Section 4.2.3 will be presented for each methodology rule 

identified in Table 2.

5.2 Project Summary

Before proceeding with the formal hypothesis tests, ANOVA tests were run on 

various sizing characteristics of the projects. While each team received the same 

requirements specification for the hotel information system, it was necessary to 

determine if the usage of one or the other of the CASE tools might confound the 

results by assisting in the creation of a set of specifications that significantly differed 

in size from that created with the other CASE tool. Boehm (1976) states that the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

120

number of specification errors is a function of the specification size. Thus, the 

following null hypothesis was tested:

For a given attribute o f specification size, the count o f a particular attribute will not 

be dependent upon the CASE tool used in creating the system specification.

Table 6 displays a summary of the sizing data for the projects. For each of the project 

size attributes (number of diagrams, maximum diagram decomposition depth, number 

of external entities, number of processes, number of files, number of data flows, 

number of data elements, number of primitive processes, number of input/output data 

flows to primitive processes, and number of split data flows), we fail to reject the null 

hypothesis at the level of 5 %

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

121

Table 6 Summary of Project Size Attributes

Attribute Mean 

(V A W/Excelerator)

Standard Deviation 

(VAW/Excelerator)

F Ratio F Probability

Diagrams 7 .9 / 8.1 .35 / 1.96 .13 .73

Depth 3.1 / 3.3 .35 / .46 .39 .55

External Entities 3.1 / 3.0 .35 / .00 1.00 .33

Processes 26.8 / 27.1 2.96 / 7.83 .02 .90

Files 6 .5 /6 .1 .53 / .35 2.74 .12

Data Flows 53.6 / 59.4 5.73 / 7.27 3.09 .10

Data Elements 67.1 /77 .4 16.39/ 18.28 1.39 .26

Primitive Processes 20.0 / 20.0 2.73 / 7.23 .00 1.00

Primitive Process I/O 78 .5 /71 .6 8.49 / 16.28 1.12 .31

Split Data Flows .5 / .0 1.41 / .00 1.00 .33

5.3 Methodology Correctness

In this section the results of the ANOVA tests will be presented for each methodology 

rule enumerated in Chapter 3. The rule enforcement mechanisms for the two CASE 

too'is were described in Section 3.3.3.1 and summarized in Tables 4 and 5. For all 

rules for which violations were observed, the mean number of violations for VAW 

groups and Excelerator groups will be presented along with the corresponding F ratios 

and F probabilities. The results are summarized in Table 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

122

Process Rule

1. A parent process must be specified before a child process. The null hypothesis 

(no difference in the number of violations of this rule between the two CASE tools) 

was supported. Among all project groups there were no violations of this rule. 

Product Rules (Internal Consistency)

2. A data flow diagram must have at least one process. The hypothesis that 

projects using VAW would have more violations of this rule than projects using 

Excelerator was not supported. Among all of the project groups there were no 

violations of this rule.

3. A data flow diagram must have no more than seven processes. The null 

hypothesis (no difference in the number of violations between the two CASE tools) 

was supported (VAW = 0.0, Excelerator = .125, F =  1.0, p = .33).

4. A context diagram must exist. The hypothesis that projects using VAW would 

have fewer violations of this rule than projects using Excelerator was not supported. 

Among all project groups there were no violations of this rule.

5. The context diagram must contain only one process. The hypothesis that projects 

using VAW would have fewer violations of this rule than projects using Excelerator 

was not supported. Among all project groups there were no violations of this rule.

6. The context diagram must contain at least one input from an external entity 

and one output to an external entity. The null hypothesis (no difference in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

123

number of violations of this rule between the two CASE tools) was supported.

Among all project groups there were no violations of this rule.

7. The context diagram process must be numbered zero (0). The hypothesis that

projects using VAW would have fewer violations of this rule than projects using 

Excelerator was supported (VAW = 0.0, Excelerator = .75, F =  21.0, p = .0004).

8. A process must have at least one input data flow and one output data flow. 

Although the number of violations observed in the specifications created with VAW 

was, as predicted, less than the number of violations observed in the specifications 

created with Excelerator, the hypothesis that projects using VAW would have fewer 

violations of this rule than projects using Excelerator was not supported (VAW =

.125, Excelerator = ..625, F = 2.95, p = .11) at a statistically significant level 

(5%).

9. A process must be connected to at least one of the following: data store, 

process, external entity. The hypothesis that projects using VAW would have fewer 

violations of this rule than projects using Excelerator was not supported. Among all 

project groups there were no violations of this rule.

10. A process must be labeled. The hypothesis that projects using VAW would have 

fewer violations of this rule than projects using Excelerator was not supported.

Among all project groups there were no violations of this rule.

11. An external entity must appear for the first time on the context diagram. The

hypothesis that projects using VAW would have fewer violations of this rule than

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

124

projects using Excelerator was not supported. Among all project groups there were 

no violations of this rule.

12. An external entity must be connected to a process. The hypothesis that projects 

using VAW would have fewer violations of this rule than projects using Excelerator 

was not supported. Among all project groups there were no violations of this mle.

13. An external entity must be labeled. The hypothesis that projects using VAW 

would have fewer violations of this rule than projects using Excelerator was not 

supported. Among all project groups there were no violations of this rule.

14. A data flow must be an interface between a process and either a second 

process, a data store, or an external entity. The hypothesis that projects using 

VAW would have fewer violations of this rule than projects using Excelerator was not 

supported. Among all project groups there were no violations of this rule.

15. A data flow into (from) a data store must have a composition that is a subset 

of the data store’s composition. The hypothesis that projects using Excelerator 

would have fewer violations of this mle than projects using VAW was not supported 

(VAW = 5.5, Excelerator = 29.75, F = 13.74, p = .002).

16. A data flow must be labeled. The hypothesis that projects using VAW would 

have fewer violations of this mle than projects using Excelerator was not supported. 

Among all project groups there were no violations of this mle.

17. A data store can only exist as an interface between two processes. The 

hypothesis that projects using VAW would have fewer violations of this mle than

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

125

projects using Excelerator was not supported (VAW = 1.5, Excelerator = .375, F = 

1.37, p = .26).

18. A data store must be labeled. The hypothesis that projects using VAW would 

have fewer violations of this rule than projects using Excelerator was not supported. 

Among all project groups there were no violations of this rule.

Product Rules (Hierarchical Consistency)

19. A parent data flow diagram must exist unless it is a context diagram. The

hypothesis that projects using VAW would have fewer violations of this rule than 

projects using Excelerator was supported (VAW = 0.0, Excelerator = 1.13, F = 

6.52, p =  .02).

20. A process must decompose to either another data flow diagram or a primitive 

process specification. Although the number of violations observed in the 

specifications created with Excelerator was, as predicted, less than the number of 

violations observed in the specifications created with VAW, the hypothesis that 

projects using Excelerator would have fewer violations of this rule than projects using 

VAW was not supported (VAW = .75, Excelerator = .13, F = .98, p =  .34) at a 

statistically significant level (5%).

21. A process must be numbered with respect to its parent. Although the number 

of violations observed in the specifications created with VAW was, as predicted, less 

than the number of violations observed in the specifications created with Excelerator, 

the hypothesis that projects using VAW would have fewer violations of this mle than

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

126

projects using Excelerator was not supported (VAW = 0.0, Excelerator = .5, F = 

1.0, p = .33) at a statistically significant level (5%).

22. An input (output) data flow on a parent data flow diagram must appear on a 

child data flow diagram as input (output). The hypothesis that projects using VAW 

would have fewer violations of this rule than projects using Excelerator was supported 

(VAW = .75, Excelerator = 10.375, F = 7.15, p = .02).

23. An input (output) data flow on a child data flow diagram must appear on a 

parent data flow diagram as input (output). Although the number of violations 

observed in the specifications created with VAW was, as predicted, less than the 

number of violations observed in the specifications created with Excelerator, the 

hypothesis that projects using VAW would have fewer violations of this mle than 

projects using Excelerator was not supported (VAW = 3.13, Excelerator =  12.25, F 

= 2.66, p = .13) at a statistically significant level (5%).

24. A set of input data flows on a child data flow diagram that were split from a 

data flow on a parent data flow diagram must match the parent data flow’s 

composition. The hypothesis that projects using VAW would have fewer violations of 

this mle than projects using Excelerator was not supported. Among all project groups 

there were no violations of this mle.

25. A data flow must decompose to either a record definition or an element 

definition. The hypothesis that projects using Excelerator would have fewer violations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

127

of this rule than projects using VAW was not supported (VAW = 10.75, Excelerator 

= 20.38, F = 1.24, p = .29).

26. A data store must decompose to either a file definition or a record definition.

The hypothesis that projects using Excelerator would have fewer violations of this 

rule than projects using VAW was not supported. Among all project groups there 

were no violations of this rule.

27. All inputs and outputs of a primitive process specification must match those 

of the corresponding parent process on the data flow diagram. Although the 

number of violations observed in the specifications created with Excelerator was, as 

predicted, less than the number of violations observed in the specifications created 

with VAW, the hypothesis that projects using Excelerator would have fewer violations 

of this rule than projects using VAW was not supported (VAW = 16.5, Excelerator 

= 11.75, F = 2.17, p = .16) at a statistically significant level (5%).

28. A primitive process specification must be labeled with the same identifier as 

the corresponding primitive process on the data flow diagram. Although the 

number of violations observed in the specifications created with VAW was, as 

predicted, less than the number of violations observed in the specifications created 

with Excelerator, the hypothesis that projects using VAW would have fewer violations 

of this rule than projects using Excelerator was not supported (VAW = 0.0, 

Excelerator = 7.88, F = 3.3, p = .09) at a statistically significant level (5%).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

128

Table 7 Summary of Comparison of Rule Violations Between CASE Tools

Rule #
Predicted # of 

Violations
Actual (mean) it of Violations Significance 

or = .05VAW Excelerator
1 VAW = Excel. 0.00 0.00
2 VAW > Excel. 0.00 0.00
3 VAW = Excel. 0.00 0.13 .3343
4 VAW < Excel. 0.00 0.00
5 VAW < Excel. 0.00 0.00
6 VAW = Excel. 0.00 0.00
7 VAW < Excel. 0.00 0.75 .0004
8 VAW < Excel. 0.13 0.63 .1080
9 VAW < Excel. 0.00 0.00
10 VAW < Excel. 0.00 0.00
11 VAW < Excel. 0.00 0.00
12 VAW < Excel. 0.00 0.00
13 VAW < Excel. 0.00 0.00
14 VAW < Excel. 0.00 0.00
15 VAW > Excel. 5.50 29.75 .0023
16 VAW < Excel. 0.00 0.00
17 VAW < Excel. 1.50 0.38 .2620
18 VAW < Excel. 0.00 0.00
19 VAW < Excel. 0.00 1.13 .0230
20 VAW > Excel. 0.75 0.13 .3396
21 VAW < Excel. 0.00 0.50 .3343
22 VAW < Excel. 0.75 10.38 .0181
23 VAW < Excel. 3.13 12.25 .1251
24 VAW < Excel. 0.00 0.00
25 VAW > Excel. 10.75 20.38 .2850
26 VAW > Excel. 0.00 0.00
27 VAW > Excel. 16.50 11.75 .1633
28 VAW < Excel 0.00 7.88 .0905

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

129

5.4 Summary

This results of the experimental study were presented in this chapter. The following 

chapter discusses the implications of the results as they pertain to the systems 

development process, systems analysts and CASE tool design.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 6 

DISCUSSION OF RESULTS

130

6.1 Introduction

The previous five chapters presented the groundwork for this study. This chapter 

presents the principal research findings based upon the results presented in Chapter 5 

and discusses the implications of these findings with respect to the systems 

development process, systems analysts, and CASE tool design. Finally, the 

limitations of this research will be presented.

6.2 Principal Research Findings

In this section the results presented in Chapter 5 will be examined and discussed in 

greater detail. This discussion will be organized by categorizing the methodology 

rules presented in Table 2.

6.2.1 Top-Down Design (Process)

Within the set of methodology rules that apply to data flow diagrams, only one rule 

(#1) applies to the top-down process of constructing the diagram set. While neither 

CASE tool provides a mechanism for the enforcement of top-down design, there were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

131

no violations of this rule by any of the project teams. Violations were determined by 

examining the date/time stamp on the individual diagrams. This result may be 

explained by the fact that the subjects were all information systems students who had 

recently learned structured analysis and had not been exposed to any other systems 

development methodologies. For more experienced analysts familiar with other 

development techniques, such as bottom-up design, different results may have been 

observed (Adelson & Soloway, 1985).

6.2.2 Data Flow Diagram (Internal Consistency)

Two rules (#2, #3) exist that apply to the number of processes on any data flow 

diagram. There were no violations of either of these rules. While VAW does not 

check for the existence of at least one process on a diagram (Excelerator, on the other 

hand, does), it is a trivial task for an analyst to look at a one page diagram and 

determine that at least one process exists. Similarly, while neither CASE tool 

enforces the rule (#3) that, to enhance readability, no diagram should have more than 

seven processes, there was only one project team that violated this rule (and only on 

one diagram). Again, because the scope of effect of this rule is confined to a single 

diagram, it is trivial for an analyst to count the number of process symbols on a 

diagram in order to determine if the rule has been violated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

132

6.2.3 Context Diagram (Internal Consistency)

Structured analysis dictates that a set of data flow diagrams is to be developed using 

the principles of top-down design, with the initial diagram serving to define the 

system’s environment. This diagram, called the context diagram, has several rules 

(#4, #5, #6, #7) applied to it that do not apply to any of the other data flow diagrams 

in a set. In all instances there is a maximum of one violation per rule per project.

This is due to the fact that there is only one context diagram per diagram set and all 

of the rules that apply to the context diagram are binary. For three of the four rules 

(#4, #5, #6) there were no violations with either CASE tool. In all three cases, 

adherence to the rule is easily confirmed by a visual inspection of the context diagram 

to verify the existence of only one process as well as input and output connected to 

the process.

It would appear as if adherence to the fourth context diagram rule (01), requiring the 

context process to be numbered as zero (0), could also be easily verified through a 

visual inspection of the context diagram. In spite of this, seven of the eight groups 

using Excelerator did not number the context process as zero. Because VAW 

automatically numbers all processes there were no violations of this rule from the 

VAW teams. At first glance it would appear as if the choice of zero is purely 

arbitrary and that any number would suffice for the context process. However, the 

numbering of all subsequent processes is based upon using zero as a basis. Failure to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

133

adhere to a consistent numbering scheme will inhibit the understanding of the 

hierarchical relationship between processes. This will be discussed further in Section

6.2.9.

6.2.4 Process (Internal Consistency)

Two of the internal consistency rules affecting processes (#9, #10) were not violated 

by any of the project groups. In both cases (freestanding processes and process 

labels) it is easy to visually inspect a data flow diagram to determine if violations of 

these errors exist. It was to be expected that VAW groups would have no violations 

of the rule requiring processes to be labeled, as VAW automatically prompts the 

analyst to enter a label as soon as a process symbol is placed on a diagram.

While it is a simple task to visually inspect a diagram and determine if a process is 

freestanding, as the diagram becomes more complex and the number of data flows 

grows it may become more difficult to distinguish between input flows and output 

flows. As predicted, the project groups using VAW had fewer violations of the rule 

requiring that each process have at least one input data flow and one output data flow 

(#8). However, the difference between the tools was not quite enough to be 

statistically significant. It is important to note that a violation of this error will be 

propagated downward via the leveling process to the primitive process specifications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

134

The result will be indeterminate (“black hole”) or impossible (“miracle”) primitive 

process specifications.

6.2.5 External Entity (Internal Consistency)

For all three rules involving external entities (#11, #12, #13) it was hypothesized that 

the VAW groups would have fewer errors than the Excelerator groups. In fact, there 

were no violations of any of the three errors by any of the project groups. As with 

the process rules described above, adherence to two of the external entity rules 

(freestanding external entities and external entity labels) is easily verified by a visual 

inspection of the diagram. The third rule deals with the role an external entity plays 

with respect to the context diagram. An external entity serves as a provider of input 

to the system or a receptor of output from the system. In either case, an external 

entity is not part of the system and is, therefore, only shown on the context diagram. 

As with the other rules that apply to external entities, adherence to this rule may also 

be easily verified by visually inspecting the data flow diagrams. Verification of these 

rules is made even easier due to the fact that external entities are typically confined to 

the context diagram.

6.2.6 Data Flow (Internal Consistency)

Two of the rules applying to data flows (#14, #16), as they relate to the internal 

consistency of data flow diagrams, were not violated by any of the project groups. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

135

both cases it was predicted that VAW groups would have fewer violations than 

Excelerator groups. One of the two rules with no violations (data flow labels) is easily 

checked through a visual inspection of the data flow diagrams. The second rule 

applying to data flows for which no violations were observed is the requirement that a 

data flow serve as an interface between a process and some other object (process, 

external entity, data store). Neither CASE tool allows a data flow to be drawn 

freestanding and both CASE tools assume that a data flow connected to only one 

object has been brought down from the data flow diagram sitting above it in the 

leveling hierarchy (in which case rules #22 or #23 from Table 2 apply). This leaves 

a simple visual inspection of the data flow diagram to reveal instances when a data 

flow has been used to connect external entities or data stores to each other.

An examination of the third rule that applies to data flows (#15) reveals a result that 

is quite different from what was expected. A data flow that flows into (or from) a 

data store must be a subset of the data store’s composition. While VAW does not 

support this rule and Excelerator does (Level 2 Passive Guidance), the VAW groups 

were found to have fewer violations of this rule than the Excelerator groups (p = 

.0023). A closer inspection of the guidance offered by Excelerator reveals that, 

rather than listing those data flows (and accompanying data elements) that are not 

subsets of the data store they flow into (or from), only the individual data elements 

that are not part of the data store’s composition are listed. Due to the absence of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

136

associated data flows, the analyst is required to browse through the data dictionary to 

determine the composition of all data flows entering the affected data store in order to 

determine which flows are in violation of the methodology rule. This problem is 

further compounded by the fact that many data flows have data elements in common. 

In this instance, the presence of guidance has hindered, rather than improved, the 

analysis of the data flow diagrams. It is also important to note that, due to the fact 

that a visual inspection of a data flow diagram will not reveal violations of this rule, 

both sets of groups encountered problems with this methodology rule.

6.2.7 Data Store (Internal Consistency)

There are two internal consistency rules that apply to data stores (#17, #18). One of 

the rules (data store labels) was not violated by any of the project groups. As with 

other data flow diagram objects, it is a simple matter to visually inspect a diagram for 

violations of this rule. The second data store rule was violated by both sets of groups 

(the difference was not statistically significant). A data store must serve as an 

interface between at least two processes, i.e., if a data store receives only net input or 

net output it should be modeled as an external entity rather than a data store. Because 

more than one process on a diagram is involved, a visual inspection of a particular 

diagram will not reveal violations of this rule. In order to find a violation of this 

rule, all diagrams within a particular level must be inspected. This inspection

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

137

problem becomes more difficult as both the number of processes and the number of 

levels increases.

6.2.8 Summary of Internal Consistency Rule Violations

Seventeen rules have been identified as applying to the internal consistency of a data 

flow diagram. Twelve of these rules were not violated by any of the project teams. 

Adherence to all twelve of these rules is easily determined by visually inspecting a 

data flow diagram. For only two of the five rules for which violations were observed 

were the differences between the CASE tools statistically significant. In the case of 

the two rules that were violated most frequently, a visual inspection of a single data 

flow diagram is not sufficient to determine if the methodology rule has been broken. 

For these rules (#15, #17) it may be appropriate to provide a more rigorous degree of 

enforcement than either passive guidance or relying on the analyst to find the mistake 

himself.

6.2.9 Data Flow Diagram (Hierarchical Consistency)

In order for data flow diagram changes to be able to propagate to lower diagram 

levels, it is important for the CASE tool to be aware of the hierarchical relationship 

that exists between data flow diagrams in a set (#19). Without this awareness, any 

changes made to a diagram on level N must be manually implemented on levels N + l ,  

N+2, etc. As was previously discussed in Section 2.3.4, the tedious nature of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

138

manually updating data flow diagrams was the cause of many organizations 

abandoning structured analysis.

In the analysis report provided by Visible Analyst Workbench, the analyst is made 

aware of any diagrams that do not have a parent (with the exception of the context 

diagram). Groups using VAW were observed to have no violations of this rule. On 

the other hand, Excelerator does not check for the existence of a parent diagram, i.e., 

diagrams may be created in any order desired and/or parent diagrams may be deleted 

at any time. All but two of the Excelerator groups had at least one diagram that was 

not connected to its parent. Any changes (addition/deletion of a data flow, external 

entity, etc.) made to the “logical” parent diagram of a child diagram will not appear 

on the child diagram because the CASE tool does not recognize the “physical” 

relationship between the diagrams. The most likely consequence of this violation is a 

failure to propagate data flows from a parent diagram to a child diagram. This will 

be examined in Section 6.2.11.

6.2.10 Process (Hierarchical Consistency)

To ensure the completeness of a set of data flow diagrams it is necessary that all 

processes be decomposed to a primitive process specification (#20). In other words, 

the child of every process on a data flow diagram must be either another data flow 

diagram or a primitive process specification. VAW does not directly support this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

139

rule, leaving the analyst to browse through the data dictionary to verify that all 

processes have been completely decomposed. However, as was discussed in Section

6.2.9, VAW does report when a diagram does not have a parent (the corollary to a 

process not having a child). Excelerator provides the analyst with decomposition 

information in its data flow diagram “Graph Explosion” report (obtained via Level 2 

Passive Guidance). As expected, the Excelerator groups had fewer violations than the 

VAW groups; however, the difference was not statistically significant.

The second rule affecting the hierarchical consistency of processes (#21) concerns the 

method by which processes are numbered. At a maximum of seven processes per 

diagram, a system with four levels of data flow diagrams (not including primitive 

process specifications) will contain 58 diagrams and 400 processes. In order to keep 

the process hierarchy organized, and to quickly associate any process with its data 

flow diagram, it is necessary to adopt a numbering convention that relates a process 

to its parent diagram. Use of a hierarchical numbering convention would prove 

especially helpful when using the data flow diagrams as a communications tool in an 

environment, such as a JAD session or structured walk-through, with a diverse group 

of people associated with the systems development project (e.g., analysts, users, 

management).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

140

Both of the CASE tools used in this study automatically number a process with 

respect to its parent; however, two distinct approaches are used. VAW numbers a 

process for the analyst when the process is placed on a diagram. The process number 

may be changed by the analyst after the process has been created (Level 1 Active 

Guidance). Excelerator also numbers a process for the analyst but not until the 

process is described in the data dictionary. At the time the process is described, the 

analyst has the option of changing the numbering. However, if a process is not 

placed in the data dictionary it will not be numbered. The analyst is not made aware 

of this until a data flow diagram analysis report is generated via Level 2 Passive 

Guidance. As expected, the groups using VAW had fewer violations of this rule than 

the groups using Excelerator; however, the difference was not statistically significant.

6.2.11 Data Flow (Hierarchical Consistency)

In order to ensure the hierarchical consistency of a set of data flow diagrams, it is 

crucial that all diagrams be level balanced, i.e., any data flow that appears as input 

(output) to a parent process must also appear as input (output) on the child diagram 

(#22). Similarly, a data flow that appears as input (output) on a child data flow 

diagram must appear as input (output) to the parent process (#23). By not 

propagating all data flows down through the diagram levels, the inputs and outputs to 

the primitive process specifications will be incomplete, resulting in incorrect 

algorithms. This will be discussed further in Section 6.2.13. As expected, groups

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

141

using VAW (Level 1 Passive Guidance) had far fewer violations of these errors than 

groups using Excelerator (Level 2 Passive Guidance).

A third rule that serves to maintain the hierarchical consistency of the data flows 

(#24) applies to flows on a child diagram that have been split from the parent. Split 

data flows allow the analyst to package data into its logical form until the level of 

decomposition necessitates the use of individual data elements. VAW supports the 

use of split data flows while Excelerator does not. Only one of the sixteen project 

groups utilized split data flows; therefore, no specific conclusions can be made as to 

the usefulness of ensuring the integrity of the composition of a split data flow. 

However, the results presented in the previous paragraph indicate that the presence of 

CASE tool support for verifying data flow balance is useful for ensuring consistent 

specifications. Because split flows must be balanced between levels, it can be 

assumed that support for this rule would be of use in helping to maintain consistent 

specifications.

A final rule applying to data flows concerns the level of abstraction represented by a 

data flow (#25). A data flow is intended to represent a “packet” of data as it moves 

through the system. In order to prepare for the design of an information system it is 

necessary to decompose all data flows into their component records and/or elements. 

Failure to do this can result in an incomplete set of inputs and outputs to the primitive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

142

process specifications as well as an incomplete data dictionary. Although VAW does 

not provide support for the enforcement of this rule, while Excelerator uses Level 2 

Passive Guidance, the groups using VAW had fewer violations of this error than did 

the Excelerator groups. This result may be explained by the contents of the “Graph 

Explosion” report used by Excelerator to indicate violations of this error. Rather than 

simply listing the data flows that have yet to be decomposed, the report lists the 

decomposition of every object (data flow diagram, process, external entity, data store, 

and data flow) for an entire diagram level (or the entire project). For even a small 

project this results in a lengthy report that is not easy to read.

6.2.12 Data Store (Hierarchical Consistency)

As with a data flow, a data store is an abstract item. While data flows represent data 

in motion, data stores represent data at rest. Underlying the abstraction shown on a 

data flow diagram is a data structure consisting of records and elements which must 

be specified in order for the functional specifications to be considered complete and 

ready to be sent to design. Further, without specifying the structure of the data store, 

the CASE tool is unable to verify that data flowing into or out of a data store is a 

subset of the data store. Excelerator uses Level 2 Passive Guidance to report 

violations of this rule while VAW does not enforce this rule in any fashion.

However, there were no violations of this rule from either set of groups. This may 

be due to the fact that, although the Excelerator groups had to manually scan a report

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

143

and the VAW groups had to manually scan the data dictionary, the number of data 

stores in the hotel information system was a manageable number for all of the groups 

(either six or seven data stores). This small number of data stores (both absolutely 

and relative to the number of data flows) made the verification process a simple one.

6.2.13 Primitive Process Specification (Hierarchical Consistency)

The leveling of a process is considered to be complete when the process has reached 

its primitive point. A process is generally considered to be a primitive process when 

it can be expressed in one page of pseudocode or some other algorithmic specification 

language. As with the leveling of any non-primitive process, the primitive process 

specification’s parent process data flows must be carried down to the primitive 

process (#27). Without these data flows, the process will be incorrectly defined. 

Further, no other inputs and outputs may be introduced at the primitive process level. 

Excelerator uses Level 2 Passive Guidance to assist the analyst in “balancing” a 

primitive process with its parent process while VAW does not support this rule. As 

expected, groups using Excelerator had fewer violations of this rule than did groups 

using VAW; however, the results were not statistically significant.

It is interesting to note that the Excelerator groups were observed to have more 

violations of the data flow balancing rules discussed in Section 6.2.11 than the VAW 

groups. While the number of violations of rules 22, 23, and 27 is consistent for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

144

Excelerator groups (10.38, 12.25, and 11.75 respectively), the number of violations 

of rules 22, 23, and 27 showed a significant increase for the VAW groups (.75, 3.13, 

16.50). As the number of levels in a data flow diagram set increase the difference 

between the number of processes on level n (and data flows into and out of the 

processes) and level n+1 increases in an amount proportional to xn+1 where x  is the 

number of processes on level n. These results are consistent with what has been 

presented in the preceding sections, i.e., as the size of the domain to be verified 

increases (in this case the number of processes) the opportunity to break a 

methodology rule also increases, thus necessitating rule verification assistance from 

the CASE tool.

The final rule applying to primitive process specifications (#28) serves to ensure a 

consistent naming convention for the primitive processes relative to their parent 

process. As was discussed in Section 6.2.10, it is important to maintain a naming 

convention that respects the hierarchical ordering of the process. By naming a 

primitive process specification for a parent process it becomes easier to relate a 

particular primitive process to its companion data flow diagram, as might be done in a 

JAD session or structured walk-through. VAW maintains the primitive process 

specification along with its parent process, thus forcing the names of the two to be 

identical. Excelerator, on the other hand, allows the analyst to apply any name to a 

primitive process. As expected, groups using VAW had no violations of this rule,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

145

while groups using Excelerator averaged nearly eight violations per group. This 

result fell just short of being statistically significant.

6.2.14 Summary of Hierarchical Consistency Rule Violations

Ten rules have been identified as applying to the hierarchical consistency of a set of 

data flow diagrams. Violations of eight of these rules were observed for at least one 

set of groups. Of the two rules for which no violations were observed, adherence to 

one of them (#26, data store decomposition) is easy to verify by browsing through the 

data dictionary. The second rule (#24, split data flow composition) was not violated 

because fifteen of the sixteen project groups did not use any split flows. For two of 

the eight rules for which violations were observed, the differences between the sets of 

groups were found to be statistically significant at the 95 % level. For seven of the 

eight rules, however, the differences between the sets of groups was observed to be in 

the predicted direction.

Unlike the internal consistency rules summarized in Section 6.2.8, which are applied 

to only one diagram at a time, the hierarchical consistency rules cannot be verified by 

visual inspection of a single data flow diagram. As the system becomes more 

complex, the number of “links” between the diagram levels grows exponentially.

This may explain the inconclusive results obtained in previous studies that examined 

the impact of CASE on the construction of data flow diagrams. These studies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

146

(summarized in Section 2.4.2.2) all had in common the fact that the experimental task 

was small, typically a context diagram and a level zero diagram. The small systems 

used in these studies contained only a small amount of decomposition and had no 

primitive process specifications to construct. The results presented in Section 6.2 

indicate that as a project grows in size, the number of methodology violations also 

increases, thus necessitating methodology support from the CASE tool.

6.2.15 Summary of Methodology Rule Violations

Besides the results presented in the preceding sections, some other interesting 

observations can be made about CASE methodology enforcement. VAW implements 

nine of its methodology rules (#4, #5, #7, #10, #13, #16, #18, #21, #28) using either 

Level 1 Restriction or Level 1 Active Guidance. Seven of these nine rules apply to 

the internal consistency of a diagram, which is typically easy to verify through visual 

inspection. None of the project groups using VAW were observed to have violated 

any of these rules. Excelerator uses either Level 2 Passive Guidance or no 

enforcement for these same nine rules. Three of these nine rules (#7, #21, #28) were 

observed to have been violated by the Excelerator groups with the difference between 

the sets of groups being substantial for two of the rules (#7, #28).

Another interesting comparison may be made by looking at rule enforcement 

mechanisms that are adjacent on the methodology enforcement spectrum (see Figure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

147

16). There are six instances of rules where Excelerator uses Level 2 Passive 

Guidance and VAW uses no enforcement (#2, #15, #20, #25, #26, #27). Differences 

between the sets of groups were observed for four of these rules (#15, #20, #25, #26) 

with only one of them being significant (in the opposite direction of what was 

predicted). This indicates that Level 2 Passive Guidance provides an insignificant 

amount of improvement in the quality of the functional specification beyond what the 

analyst can deliver by performing visual inspections of the data flow diagrams. A 

second set of rules (#8, #9, #12, #14, #17, #22, #23) are enforced by VAW with 

Level 1 Passive Guidance and by Excelerator with Level 2 Passive Guidance. 

Differences between the sets of groups were observed for four of these rules (#8,

#17, #22, #23) with one of the differences being significant and two of the differences 

being close to significant. This indicates that being able to obtain guidance while 

working on a data flow diagram may be more helpful than being forced to exit the 

diagramming tool before obtaining guidance.

6.3 Implications for Systems Development

The systems development waterfall life cycle is an orderly model for managing the 

systems development activities, with the output of each phase of the model being used 

as the input of the succeeding phase. The structured techniques are a set of 

methodologies used to implement each of the phases of the life cycle. Recall from 

the discussion in Section 2.3 that the output of structured analysis, the functional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

148

specification, becomes the input to structured design. While the functional 

specification serves as a documented model of the proposed system, in the interest of 

clarity, many details, such as iterations, decision paths, and error control, are 

purposely omitted. Therefore, the functional specification is insufficient to act as the 

sole guideline for the coding of the system.

One of the activities of the design phase, which can be implemented via structured 

design, is the construction of the program structure through a transformation of the 

functional specification. This transformation, known as either transform analysis or 

transaction analysis, results in the creation of a set of structure charts. “A structure 

chart is a graphical representation of the program modules and their relationship to 

each other within a hierarchical structure” (Wu & Wu, 1994, p. 578).

The derivation of a set of program structure charts from a set of data flow diagrams 

is based on the principle that the structure of any system can be represented by three 

steps: input, process, and output. Transform and transaction analysis serve to 

identify, from the data flow diagrams, the system’s input stream, central transform 

(or transaction center), and output stream. By utilizing the levels of the data flow 

diagrams, the structure charts are constructed in a top-down, hierarchical fashion, 

with the structure chart modules corresponding to data flow diagram processes and the 

structure chart data couples corresponding to data flow diagram data flows. Once the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

149

structure charts are complete, the modules are defined by expanding the primitive 

process specifications to include controls, error flags, and other input and output 

processing details.

Many metrics have been identified for use in evaluating the quality of structure 

charts. These metrics can be grouped into five categories: coupling, cohesion, 

complexity, modularity, and size (Troy & Zweben, 1981). Of these, the metrics most 

directly related to data flow diagrams are the coupling metrics. Coupling measures 

the strength of association established by the interconnections from one module to 

another. The degree of coupling is dependent upon the number and type of couples 

between modules (Yourdon & Constantine, 1979). Because the structure charts are 

derived directly from the data flow diagrams, it is crucial that all of the data flows be 

properly displayed on the data flow diagrams. In particular, when a process is 

decomposed its input and output data flows must be propagated to the next diagram 

level. A failure to correctly propagate the data flows through the data flow diagrams 

will result in incorrectly specified structure charts. Similarly, in order for the 

structure chart modules to be correctly specified, input and output data flows to the 

primitive processes must be propagated to the primitive process specifications. From 

Table 7 it is seen that five of the 28 methodology rules (#15, #22, #23, #25, #27) 

were violated much more frequently than any of the other rules. These five rules all 

impact the data flows (or their composition) and their inter-diagram relationships with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

150

processes and primitive process specifications. Of these five rules, the three violated 

most frequently (#15, #25, #27) were not enforced by Visible Analyst Workbench and 

were enforced with Level 2 Passive Guidance by Excelerator. The remaining two 

rules (#22, #23) were violated extensively by the Excelerator groups (supported with 

Level 2 Passive Guidance) but had very few violations among the VAW groups 

(supported by Level 1 Passive Guidance). Clearly, in order to ensure the consistency 

and correctness of the structure charts derived from the functional specification, it is 

important to provide support for the methodology rules that apply to the leveling of 

the data flow diagrams.

6.4 Implications for Systems Analysts

While the embedding of systems development methodology rules in CASE tools has 

been shown in this study to be an effective means of enforcing a development 

methodology, many advocates of automated development tools argue that restriction 

and/or guidance of the analyst must not be implemented at the expense of the 

analyst’s ability to be creative. Crow (1990) argues that the decision to implement 

methodology support should take a back seat to creativity: “Creativity cannot be 

stifled” (p. 14). Page-Jones (1992) contends that many CASE tools are “draconian in 

their degree of methodology enforcement” (p. 38). Davis (1982) acknowledges that 

there exist situations when “detailed structure” may be necessary. However, Davis 

cautions that there are also situations when detailed structure may be “inhibiting and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

151

frustrating” (p. 12). Adelson and Soloway (1985) state that the level of support 

provided for an analyst by a tool should reflect the experience of the analyst with the 

problem domain and the design technique. Nunamaker, Dennis, Valacich, Vogel, and 

George (1993) advocate tools with a balance between restriction and flexibility, and 

indicate that too much restriction can “constrain creativity and exploration” (p. 135). 

Vessey et al. (1992) address the impact of CASE tool restriction and guidance on 

analyst creativity by advocating a development environment that adapts to the 

experience of the analyst. The first empirical work in this area is being conducted by 

Day (1993). The study, currently in the data collection phase, attempts to determine 

how analysts respond to CASE tool-imposed constraints during the systems 

development process. Until results from Day’s study are reported, the idea that 

CASE stifles analyst creativity will merely be a “rule of thumb” that is subject to 

debate. However, as will be shown in the following section, the “draconian” image 

of CASE tool methodology enforcement proffered by Page-Jones (1992) is more a 

mistaken perception than a reality of CASE tool design.

While the subjects’ personal perceptions of, and satisfaction with, their assigned 

CASE tool was not a variable in this study, all subjects were required to complete a 

post-project questionnaire regarding the use of their assigned CASE tool. Comments 

in response to the question about positive features of their assigned CASE tool 

included: “Excelerator made level balancing much easier than it would have been if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

152

done manually.”, “Visible Analyst helped us follow the Yourdon methodology.”,

“The standards imposed by the CASE tool improved the quality of our project.”, 

“Visible Analyst’s automatic prompting for diagram object labels and automatic 

numbering of processes helped keep our project consistent.”, and “VAW’s graph 

analysis tool was extremely helpful to our group.” While the students all had 

negative comments about their assigned CASE tools, none of the students indicated 

feeling constrained by the methodology support provided by their respective tools. 

Because the subjects in this study were all “novice” analysts, data collection from a 

more diverse pool of systems analysts is needed before substantive conclusions can be 

made about the effects of CASE methodology support on analyst creativity.

6.5 Feasibility of CASE Support for Structured Analysis 

While all CASE tool vendors claim their tools support a particular methodology (or 

methodologies), and all of the vendors preach the importance of following a 

methodology for consistency and to aid in communication with users, the philosophy 

of methodology support differs quite substantially between CASE products. Some 

tools, such as BriefCASE and Excelerator, specifically indicate a flexible philosophy. 

In BriefCASE’s documentation it states, “Rules may be bent or broken to enhance the 

objectives of clear communication” (Crow, 1990, p. 14). Excelerator’s 

documentation states, “Excelerator doesn’t require you to adhere to diagramming 

rules .... it does not require that you /ollow any or all of the rules it checks for”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

153

(Intersolv, 1989, pp. 3-5, 6-23). On the other hand, some tools, such as Visible 

Analyst Workbench, indicate, in stronger terms, the importance of methodologically 

correct specifications and the role of the CASE tool in ensuring their correctness: “... 

the tool insures the integrity of the system in terms of both consistency and 

completeness .... by automating this ... the tool helps achieve the drastic shortening 

of analysis and design ... that is so strongly desired in software engineering” (Visible 

Systems, 1989, p. 24). Other tools, such as Cadre Technologies’s Teamwork/PCSA, 

take the middle ground: “Teamwork/PCSA allows you to perform checks on your 

project” (Cadre Technologies, 1988, p. 2-20).

By adopting a particular systems development methodology and mandating its use, an 

organization is expecting the products of the systems development activities to 

conform to the chosen methodology. To achieve the objective of methodology 

prescription an organization, in theory, should be able to purchase a CASE tool that 

supports the chosen methodology. However, as has been discussed throughout this 

dissertation, the concept of methodology support can be handled differently from one 

CASE tool to another. Further complicating the issue is the fact that some 

methodology rules cannot, for practical reasons, be implemented in a restrictive 

fashion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

154

A discussion of the feasibility of automating methodology rules must begin with the 

conflict between an actual methodology violation and work in progress. The CASE 

tool should not interrupt the analyst’s work to report a violation if the suspected 

violation may be a symptom of unfinished work (recall Page-Jones’s (1992) 

“draconian” image of CASE tool methodology support). To account for this, a rule 

violation that may be the result of unfinished work should be handled in one of two 

ways: 1) The violation may be automatically presented to the analyst only when the 

analyst saves the diagram or exits the diagramming tool (Level 2 Active Guidance), 

or 2) The violation is only presented to the analyst upon the request of the analyst 

(Level 1 or Level 2 Passive Guidance). In either of the above methods, the analyst is 

not bothered with an erroneous interruption while drawing the diagram. While 

notification of violations via active guidance would have the probable effect of 

identifying possible inconsistencies earlier than would passive guidance, active 

guidance might also prove to be a nuisance to the analyst by forcing the analyst, 

every time a diagram is saved, to read through a list of violations that can be 

attributed to unfinished work. The remainder of this section examines the feasibility 

and practicality of automating the rules of structured analysis previously presented in 

Table 2. The feasibility of automating structured analysis methodology rules will be 

reported with respect to the scale shown in Figure 16. The scale displays the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

155

previously discussed methods of notifying an analyst of a rule violation, arranged in 

order of strong to weak enforcement rigidity.18

L evel 2  Level 1 L evel 2  Level 1 Level 2  N ot
Restriction A c tiv e  A c tiv e  P assive  P assive  Im p le m e n ted

G u id a n c e  G u id a n c e  G u id a n c e  G u id a n c e

Stronger ---------------------------------------  Weaker  ►
Figure 16 Spectrum of Methodology Enforcement

Process Rule

1. A parent process must be specified before a child process. This is the only 

methodology rule that enforces the process of top-down design. This rule may be 

restrictively (Level 1) enforced by a CASE tool by not allowing processes to be 

linked post-hoc, i.e., the only way new processes (with the exception of the context 

diagram process) may be created is through the decomposition and subsequent 

refinement of a parent process.

18 For the methodology rules described in this section, implementation feasibility can 
propagate to the right (with respect to Figure 16), i.e., a rule that is listed as being able to be 
implemented as Level 2 Restriction can also be implemented as active guidance or passive 
guidance. However, a rule that is listed as being able to be implemented as active guidance 
cannot be implemented as either Level 1 Restriction or Level 2 Restriction. It has also been 
assumed that an error that could be attributed to unfinished work is to be treated as 
unfinished work. Therefore, when presenting the feasibility summary in Table 8, Level 1 
Passive Guidance has been chosen over Level 2 Active Guidance.

Level 1 
Restriction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

156

Product Rules (Internal Consistency)

2. A data flow diagram must have at least one process. This rule cannot be 

enforced in a restrictive fashion because doing so will not take into account unfinished 

work. For example, a diagram in progress may contain data flows and data stores but 

not processes. Active guidance (Level 2) can be provided to the analyst while saving 

the diagram or exiting the diagramming tool. Passive guidance (Level 1 or Level 2) 

can be provided if the analyst does not wish to be distracted with automatic internal 

consistency checks on work in progress.

3. A data flow diagram must have no more than seven processes. This rule can 

be restrictively (Level 1) enforced by a CASE tool by not allowing the analyst to 

access a new process symbol if seven processes already exist on the data flow 

diagram.

4. A context diagram must exist. This rule can be restrictively (Level 1) enforced 

by a CASE tool by defining the first data flow diagram to be the context diagram and 

applying all other context diagram rules to this diagram.

5. The context diagram must contain only one process. This rule can be 

restrictively (Level 1) enforced by a CASE tool by not allowing the analyst to access 

a new process symbol if a process already exists on the diagram. However, the 

requirement that the context diagram must have a process cannot be restrictively 

enforced in order to account for unfinished work. Active guidance (Level 2) can be 

provided to the analyst while saving the diagram or exiting the diagramming tool.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

157

Passive guidance (Level 1 or Level 2) can be provided if the analyst does not wish to 

be distracted with automatic internal consistency checks on work in progress.

6. The context diagram must contain at least one input from an external entity 

and one output to an external entity. This rule cannot be enforced in a restrictive 

fashion because doing so will not take into account unfinished work. For example, an 

unfinished context diagram might contain input from an external entity but no output 

to an external entity. Active guidance (Level 2) can be provided to the analyst when 

saving the diagram or exiting the diagramming tool. Passive guidance (Level 1 or 

Level 2) can be provided if the analyst does not wish to be distracted with automatic 

internal consistency checks on work in progress.

7. The context diagram process must be numbered zero (0). This rule can be 

restrictively (Level 1) enforced by a CASE tool by automatically numbering the 

context process for the analyst when the process is created and not allowing the 

analyst to change the numbering.

8. A process must have at least one input data flow and one output data flow.

This rule cannot be enforced in a restrictive fashion because doing so will not take 

into account unfinished work. For example, an unfinished diagram might contain a 

process with an output data flow but no input data flow. Active guidance (Level 2) 

can be provided to the analyst when saving the diagram or exiting the diagramming 

tool. Passive guidance (Level 1 or Level 2) can be provided if the analyst does not 

wish to be distracted with automatic internal consistency checks on work in progress.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

158

9. A process must be connected to at least one of the following: data store, 

process, external entity. This rule cannot be enforced in a restrictive fashion 

because doing so will not take into account unfinished work. For example, 

immediately after a process is drawn it is free-standing. Active guidance (Level 2) 

can be provided to the analyst when the diagram is saved or the diagramming tool is 

exited. Passive guidance (Level 1 or Level 2) can be provided if the analyst does not 

wish to be distracted with automatic internal consistency checks on work in progress.

10. A process must be labeled. This rule can be restrictively (Level 1) enforced by 

a CASE tool by automatically prompting the analyst to enter a label when the process 

is created and requiring the analyst to enter a label at the prompt.

11. An external entity must appear for the first time on the context diagram.

This rule can be restrictively (Level 1) enforced by a CASE tool by verifying the 

name of any external entity placed below the context diagram with a list of names of 

those external entities appearing on the context diagram. If the external entity is 

appearing for the first time in the diagram set (but not on the context diagram) the 

CASE tool can disallow the placement of the external entity.

12. An external entity must be connected to a process. This rule has two possible 

scenarios, each of which requires a different enforcement mechanism. In the first 

scenario the external entity is free-standing and, therefore, in violation of the 

methodology rule. However, this may be attributed to work in progress rather than 

an error by the analyst. Active (Level 2) or passive (Level 1 or Level 2) guidance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

159

can be used to detect a free-standing external entity. In the second scenario, the 

analyst attempts to connect the external entity to a data store or another external 

entity. A CASE tool may prohibit this type of connection from being made (Level 1 

Restriction).

13. An external entity must be labeled. This rule can be restrictively (Level 1) 

enforced by a CASE tool by automatically prompting the analyst to enter a label when 

the external entity is created and requiring the analyst to enter a label at the prompt.

14. A data flow must be an interface between a process and either a second 

process, a data store, or an external entity. This rule may be enforced in a 

restrictive (Level 1) manner by not allowing a data flow to be drawn as a free

standing object. Instead, a data flow can only be created by indicating the two 

existing objects that the flow is connecting. If one of the objects is not a process the 

CASE tool can prevent the data flow from being created.

15. A data flow into (from) a data store must have a composition that is a subset 

of the data store’s composition. This rule cannot be enforced in a restrictive fashion 

because doing so will not take into account unfinished work. For example, the 

analyst can choose not to explicitly define, via the data dictionary, the composition of 

the data stores and/or data flows until after the diagram has been drawn. In this case, 

active guidance (Level 2) or passive guidance (Level 1 or Level 2) can be used to 

indicate any potential inconsistencies or the existence of an undefined data flow/store. 

Even if the CASE tool required the analyst to immediately enter the data dictionary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

160

after creating a data store or a data flow, the analyst must still be allowed to leave the 

composition definition unfinished.

16. A data flow must be labeled. This rule can be restrictively (Level 1) enforced 

by a CASE tool by automatically prompting the analyst to enter a label when the data 

flow is created and requiring the analyst to enter a label at the prompt.

17. A data store can only exist as an interface between two processes. This rule 

has two possible scenarios, each of which requires a different enforcement 

mechanism. In the first scenario the data store is free-standing or connected to only 

one process (and is not connected to the parent process) and, therefore, in violation of 

the methodology rule. However, this may be attributed to work in progress rather 

than an error by the analyst. Active (Level 2) or passive (Level 1 or Level 2) 

guidance can be used to detect this situation. In the second scenario, the analyst 

attempts to connect a data store to anything but a process. The CASE tool may 

prohibit this type of connection from being made (Level 1 Restriction).

18. A data store must be labeled. This rule can be restrictively (Level 1) enforced 

by a CASE tool by automatically prompting the analyst to enter a label when the data 

store is created and requiring the analyst to enter a label at the prompt.

Product Rules (Hierarchical Consistency)

19. A parent data flow diagram must exist unless it is a context diagram. This 

rule can be restrictively (Level 1) enforced by a CASE tool by only allowing a new

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

161

diagram to be created (except for the context diagram) from a process decomposition 

resulting in a new (child) diagram level. Further, Level 1 restriction can be 

employed to prevent a diagram from being deleted if it has any child diagrams.

20. A process must decompose to either another data flow diagram or a primitive 

process specification. This rule cannot be enforced in a restrictive fashion because 

doing so will not take into account any unfinished leveling. Level 1 Active Guidance 

can be provided to the analyst by giving the analyst the option of creating a primitive 

process specification after creating the process. Level 2 Active Guidance regarding 

the completeness of the set of data flow diagrams can be provided to the analyst when 

saving a diagram or exiting the diagramming tool. Passive guidance (Level 1 or 

Level 2) can be provided if the analyst does not wish to be distracted with automatic 

completeness checks on work in progress.

21. A process must be numbered with respect to its parent. This rule can be 

restrictively (Level 1) enforced by a CASE tool by automatically numbering all 

processes when they are created and not allowing the analyst to change the 

numbering.

22. An input (output) data flow on a parent data flow diagram must appear on a 

child data flow diagram as input (output). This rule can be restrictively (Level 1) 

enforced by a CASE tool by automatically carrying down all input and output data 

flows from a parent process to a child diagram when moving between diagram levels

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

162

and not allowing the net input and net output data flows to be deleted from the child 

diagram.

23. An input (output) data flow on a child data flow diagram must appear on a 

parent data flow diagram as input (output). This rule can be restrictively (Level 1) 

enforced by a CASE tool by not allowing insertions of net input and net output data 

flows on a child diagram.

24. A set of input data flows on a child data flow diagram that were split from a 

data flow on a parent data flow diagram must match the parent data flow’s 

composition. This rule can be restrictively (Level 1) enforced by a CASE tool by 

automatically carrying down input data flows from a parent process to a child diagram 

when moving between diagram levels. Further, the CASE tool should not allow any 

of the sub-flows to be deleted from the child diagram nor may any sub-flows be 

added to the child diagram.

25. A data flow must decompose to either a record definition or an element 

definition. This rule cannot be enforced in a restrictive fashion because doing so will 

not take into account any unfinished work. Level 1 Active Guidance can be provided 

to the analyst by giving the analyst the option to enter the definition in the data 

dictionary after creating the data flow. Level 2 Active Guidance regarding the 

completeness of the set of data flow diagrams can be provided to the analyst when 

saving a diagram or exiting the diagramming tool. Passive guidance (Level 1 or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

163

Level 2) can be provided if the analyst does not wish to be distracted with automatic 

completeness checks on work in progress.

26. A data store must decompose to either a file definition or a record definition.

This rale cannot be enforced in a restrictive fashion because doing so will not take 

into account any unfinished work. Level 1 Active Guidance can be provided to the 

analyst by giving the analyst the option to enter the definition in the data dictionary 

after creating the data store. Level 2 Active Guidance regarding the completeness of 

the set of data flow diagrams can be provided to the analyst when saving a diagram or 

exiting the diagramming tool. Passive guidance (Level 1 or Level 2) can be provided 

if the analyst does not wish to be distracted with automatic completeness checks on 

work in progress.

27. All inputs and outputs of a primitive process specification must match those 

of the corresponding parent process on the data flow diagram. This rale can be 

restrictively (Level 1) enforced by a CASE tool by automatically carrying down input 

and output data flows from the parent process to the primitive process specification 

upon creation of the primitive process specification. Further, the CASE tool should 

not allow any of the inputs or outputs to be deleted from the primitive process 

specification nor may any inputs or outputs be added to the primitive process 

specification. To ensure that the inputs and outputs are actually used by the primitive 

process specification would require the CASE tool to parse the specification in order 

to find the inputs and outputs. In order to account for a specification “in progress”,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

164

this procedure should only be done when exiting or saving the process specification 

(Level 2 Active Guidance) or at the request of the analyst (Level 1 or Level 2 Passive 

Guidance).

28. A primitive process specification must be labeled with the same identifier as 

the corresponding primitive process on the data flow diagram. This rule can be 

restrictively (Level 1) enforced by a CASE tool by automatically labeling the 

primitive process specification with the corresponding process label and not allowing 

the analyst to change the label.

Table 8 summarizes the methodology enforcement feasibility discussion presented in 

this section. From Table 8 it is seen that categorizing a CASE tool as “restrictive” is 

inappropriate. Ten of the twenty-eight methodology rules cannot be feasibly 

implemented in a restrictive fashion. It should also be noted that some form of 

methodology enforcement is possible for all of the 28 rules investigated in this study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Table 8 Summary of CASE Tool Methodology Enforcement Feasibility

165

Upon Creation Upon Exit/Save Post-Method

Automatic On Automatic On Not

Rule # Mandatory Override Request Mandatory Override Request Feasible

1 llllllifcllll
2 M it t t l
3

4 ' >

5 ■ ■ I
6

7

8

9 '  rS

10

11

12
' v  * * .

13 * * ± -

14  ̂~ ~ - -'~r -

15 P P S | M i

16
/  1,/-.■ f

17 < /  * «. '  f ^
18 *' ^
19

<t t 4
20

21

22

23

24 .... i:..
25

26 IMillllllll
27 ...... '....... 5.
28

Level 1 Level 1 Level 1 Level 2 Level 2 Level 2  Not

Restriction Active Passive Restriction Active Passive Feasible

Guidance Guidance Guidance Guidance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

6.6 Summary

This chapter discussed the implications of the research findings as they pertain to the 

systems development process, systems analyst creativity, and CASE tool design. The 

results indicate that rules applying to the hierarchical consistency of diagrams are 

violated more frequently than are rules applying to the internal consistency of 

diagrams. Adherence to the hierarchical consistency rules are crucial to the 

successful construction of structure charts in the design phase of the systems 

development life cycle. However, it is important not to let the desired outcome of 

methodologically correct specifications override the systems analyst’s ability to be 

creative. Further, there exist many structured analysis methodology rules that are not 

feasible to enforce in a restrictive fashion, necessitating the systems analyst to take an 

active role in ensuring the specifications adhere to the rules of the methodology.

The following chapter summarizes this dissertation, describes limitations of this study, 

and suggests future research opportunities that could extend or refine this study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 7 

CONCLUSION

167

7.1 Introduction

This chapter serves to summarize the contributions of this research. Limitations of 

the experimental study and directions for future research will also be presented.

7.2 Contributions

Despite the hype surrounding CASE, and its claims to increase systems analyst 

productivity and information system quality, there is little in the way of empirical 

evidence to indicate CASE makes a substantial impact on the systems development 

process (Everest & Alanis, 1992; Kemerer, 1989). Previous experimental studies 

comparing the quality and consistency of functional specifications created with the aid 

of CASE tools versus those created manually have been, at best, inconclusive (Baram, 

Steinberg, & Nosek, 1990; Yellen, 1990; Frolick, Wilkes, & Rainer, 1993). In all 

three of the above studies, the experimental task was small and the subjects were 

under a short time constraint. Any potential positive impact of the CASE tool was 

overwhelmed by the subjects’ frustrations with trying to learn the tool and complete 

the experimental task in the short time period allotted. For this dissertation, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

168

subjects performed a complex task requiring the delivery of a complete functional 

specification. Further, in order to allow the subjects to do a thorough job in 

completing the specifications, the task was put into the context of a two-month term 

project. Before beginning the task, all subjects received extensive training in the use 

of both the methodology and the CASE tool.

Some of the results of this study echo those reported in previous experiments with 

CASE. When the unit of analysis is a single data flow diagram, the level of 

methodology support provided by the CASE tool does not appear to influence 

adherence to the systems development methodology. Due to the modular nature of 

the functional specification, a single data flow diagram represents only a small portion 

of the system being studied. Treated as an island, a single diagram is manageable 

enough to verify through a visual inspection. However, when the unit of analysis 

shifts to the entire project, and intra- and inter-level relationships are investigated, the 

number of methodology violations increases. Further, for many of the hierarchical 

consistency rules, the number of rule violations is dependent upon the level of 

methodology support provided by the CASE tool. The results indicate that CASE 

tools, in order to support and encourage analyst creativity, can “loosen up” the level 

of rule enforcement provided while drawing any particular data flow diagram, yet 

“tighten up” the enforcement of the rules involving the relationships between the 

diagrams.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

169

The results presented in this study indicate that CASE tool support for a particular 

systems development methodology is not a binary question. Because support for a 

particular methodology has been identified in the literature as being an important issue 

to consider when choosing a CASE tool (Amundsen & Christoffersen, 1987; Baram & 

Steinberg, 1989; Bostrom, 1988; Burkhard, 1989; Everest & Alanis, 1992; Linos, 

1992; McClure, 1989b; Rozman, Gyorkos, & Rizman, 1992; Shafer & Shafer, 1993; 

Subramanian & Gershon, 1991; Zucconi, 1989), CASE tool selection criteria may be 

further refined by comparing the level of methodology support offered by a particular 

CASE tool with the maximum feasible level of CASE tool methodology support. 

Although this study only looked at Yourdon structured analysis, a similar exercise 

could be performed with any methodology supporting structured analysis or the 

systems development life cycle.

7.3 Research Limitations

As with any experimental study, questions of external validity must be raised. All 

members of the project groups were undergraduate students in Management 

Information Systems. There has been significant debate in the literature over the 

appropriateness of using students as surrogates for professional systems developers 

(Moher and Schneider, 1982). In the professional world it is rare to find teams 

consisting only of novices. Professional systems development teams usually have the 

advantage of being able to work together for at least 40 hours per week. In order to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

170

maximize the efficiency and effectiveness of system development teams in the 

professional world, team assignments are generally made based upon the need for a 

set of particular skill's rather than the random assignment method employed in this 

study (Robillard, 1989). The experimental task chosen for this study, while modeled 

after an actual development project in the professional world, had to be modified in 

order that it could be reasonably completed within two months.

Along with questions about external validity there are some internal validity issues 

that also need to be recognized. There were only eight project groups assigned to 

each CASE tool. While this allows project replication that is not possible in the 

professional world (Kemerer, 1989), the small sample size makes it difficult to obtain 

statistically significant results. Further, the small sample size allowed for the 

investigation of only two (of approximately 26) CASE tools that claim to support 

structured analysis. While all subjects were management information systems majors, 

and project team assignments were made after the deadline to drop the systems 

analysis and design course, there is no way to assure that all subjects were equally 

motivated to perform the experimental task.

7.4 Future Research

There are several future research opportunities that could extend or refine this study. 

These will be described in the following subsections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

171

7.4.1 Alternative User Interfaces

Both of the CASE tools used in this study, Excelerator 1.9 and Visible Analyst 

Workbench 3.1, were DOS-based. Since the completion of the study, both vendors 

(Intersolv and Visible Systems Corporation) have released Windows versions of their 

products. These new products provide the opportunity to replicate the study with an 

alternative, and increasingly more preferred, user interface. For both tools, the size 

of the methodology rule base as well as the level of enforcement for each rule is 

virtually unchanged between the DOS and Windows versions. However, the direct- 

manipulation interface employed by Windows allows the analyst to view multiple 

diagrams and/or methodology rule violations on the same screen. For example, 

Excelerator 1.9’s Level 2 Passive Guidance requires the analyst to save the data flow 

diagram, exit the data flow diagramming tool, exit the graphics module, enter the 

analysis module, and choose the desired analysis report. Due to the inherent 

limitations of DOS, the analyst may not perform any of these tasks side-by-side. By 

using Excelerator 1.9 for Windows the analyst may visually inspect the hierarchical 

relationship between a parent and child data flow diagram or view analysis results in a 

window adjacent to a data flow diagram. The use of a direct-manipulation interface 

may also promote analyst creativity and, thus, restore any perceived ability to be 

creative that has been lost through the enforcement of the development methodology. 

For example, Roberts (1980) found that a direct-manipulation interface can greatly 

simplify a user’s tasks compared to other forms of user interface. A direct-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

172

manipulation interface can provide the user with a strong feeling of mastery and 

competence. Users also feel more confident and are more willing to explore 

sophisticated aspects of a system when using a direct-manipulation interface 

(Hutchins, Hollan, & Norman, 1986).

7.4.2 CASE Methodology Support as a Pedagogical Instrument

The CASE adoption literature indicates that one of the critical success factors for 

CASE is to provide methodology training before CASE tool training (Alavi, 1993; 

Kemerer, 1992; Rozman, Gyorkos, & Rizman, 1992). Similar conclusions have been 

drawn regarding the use of CASE in academia (Jankowski & Norman, 1992). 

However, besides serving as a tool to assist an analyst in the construction of system 

specifications, a CASE tool, through its methodology support mechanisms, can also 

serve as a pedagogical instrument through which a novice analyst might be trained or 

an experienced analyst might learn a new systems development methodology.

Research into computer-assisted learning shows that adaptive advice giving has been 

found to be desirable in computer-assisted instructional systems (Hannafin, 1984).

To determine if the use of CASE has a negative impact on learning introductory 

systems development concepts, including methodologies, Heiat and Heiat (1992) 

conducted two introductory systems analysis and design courses that used different 

approaches toward teaching a systems development methodology. No CASE tools

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

173

were used during one of the courses while in the second course the students received 

hands-on training in CASE while they were learning a systems development 

methodology. In both classes the students were twice examined on then- 

understanding of the course principles. No significant difference in performance was 

found between the two groups of students, suggesting that the use of CASE does not 

have adverse effects on student learning. Because the CASE tool chosen for the 

above study, BriefCASE, offers almost no methodology support, the opportunity 

exists to repeat this study with CASE tools offering various levels of methodology 

support.

7.4.3 CASE Methodology Support Effects on Structured Design 

An obvious extension to this study is to investigate the impact that methodology 

correctness has upon the output of structured design. This can be investigated using 

two different methods. In the first method, the functional specification created with a 

CASE tool is used to derive a set of structure charts. The consequences of not having 

methodologically correct specifications can be measured by tracking methodology 

errors uncovered in the functional specification as they propagate through the design 

specifications. In the second method, a set of structure charts is derived with the 

assistance of a CASE tool and the number of methodology errors in the structure 

charts are noted. Vessey et al. (1992) have identified a set of structured design 

methodology rules whose CASE tool implementation mechanisms can be evaluated in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

174

order to compare the level of structured design support offered by various CASE 

tools. From these comparisons, and a study of the feasibility of automating structured 

design methodology rules, hypotheses can be generated and tested.

7.5 Conclusion

When CASE was introduced to the MIS profession it was touted as a means to obtain 

“revolutionary” advances in both system quality and analyst/programmer productivity. 

An examination of the empirical and anecdotal data on the impact CASE has had on 

the systems development process finds that the impact has been “evolutionary” rather 

than “revolutionary”. It is the responsibility of MIS researchers and practitioners to 

identify areas in which CASE may improve the systems development process. One of 

the primary puiposes of CASE is to serve as a companion to the systems development 

methodology used during the development process. This study has shown that the 

level of companionship (for structured analysis) provided by a CASE tool varies from 

tool to tool, and within a particular tool, from rule to rule. Further, the study 

indicates that the level of methodology support provided by a CASE tool for a 

particular rule has an effect on the number of violations of the rule. Further research 

under a variety of systems development scenarios may enable the identification of an 

“optimal” set of CASE tool methodology support mechanisms for the entire systems 

development life cycle. Through the assistance of these “optimal” methodology

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

175

support mechanisms, the goal of “revolutionary” quality and productivity 

improvements may one day be realized.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

APPENDIX A
176

SUBJECT BACKGROUND SURVEY

Name

1. Which MIS and/or computer courses have you already taken? Please write the 
grade you received for the course in the appropriate place regardless of where you 
took the course. The numbers in parenthesis are the corresponding courses at the 
University of Arizona.

 Intro, to MIS (111)
 Intro, to Programming (121)
 Data Structures (301)
 Data Communication (307)
 Database (331)
 Other (please specify course)
 Other (please specify course)
 Other (please specify course)

2. Which, if any, of the above courses did you take at another school? Where were
the course(s) taken?

3. Which MIS course(s) are you currently taking at the U of A?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

177

4. To what extent are you familiar with the following programming languages? Please 
circle the appropriate response based upon the following code:
1 = 1  have never been exposed to this language
2 = 1  have been exposed to this language but have forgotten it
3 = 1  remember some of what I learned about this language
4 = 1 could write a program in this language with a reference book at my side
5 = I am fluent in this language

Pascal
FORTRAN
C
BASIC
COBOL
Assembly

2
2
2
2
2
2

3
3
3
3
3
3

4
4
4
4
4
4

5
5
5
5
5
5

5. Have you ever been registered in MIS 341 before this semester? 

Yes No

If you circled yes, when were you registered for the course?

6. Do you have any experience with systems analysis and design outside of the 
classroom?

Yes No

If you circled yes, please explain.

7. Do you have any experience with CASE tools? 

Yes No

If you circled yes, what tool(s) have you used?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

178

8. Do you own a personal computer?

Yes No

9. Please answer the following questions:

A ge_______________

Sex (circle one) Male Female

Highest level of education attained_____________

What grade do you want to get in this course?____

What do you see yourself doing after you graduate?

Are there any circumstances which may make it difficult for you to handle the serious 
time commitment this course requires?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

179

APPENDIX B 

HOTEL REQUIREMENTS SPECIFICATION

INTRODUCTION

In this project, you will study the procedures used at the Wildcats Hotel for activities 
such as checking in guests, charging guests for services used, checking out guests, 
and producing reports for both management and guests. You are asked to undertake 
the analysis and design activities required for implementing a system to automate 
these procedures (note: you are not asked to implement the system). As part of the 
project, you will develop data flow diagrams, data dictionary entries, minispecs, and 
structure charts using the CASE tool assigned to you.

BACKGROUND

Wildcats Hotel is a popular hotel/resort in Tucson. Recently, the executive manager 
of Wildcats Hotel contacted the MIS department to ask for assistance. The hotel was 
in the process of developing an automated system for critical hotel functions such as 
guest check-ins, check-outs, etc. (more details are given in the following sections). 
The call was directed to the students of MIS 341, who were expected to have 
considerable knowledge in developing systems. The students agreed to help Wildcats 
Hotel in their efforts.

In the following sections, you will be given detailed descriptions of each of the major 
activities/processes that are involved. After all the major activities have been 
described, you will be given information on the actual data stores/files to be used by 
the system and the data elements that comprise each store.

MAJOR ACTIVITIES

Initial interviews with hotel management and staff suggest that the new information 
system would need to support normal business transactions, such as check-in, room 
billing and check-out. It would also need to handle charges from the restaurant, golf 
course, bars, pay TV, in-room beverage and snack service, etc. Additionally, the 
system would need to provide a full range of management reports and decision 
support information. Finally, because management is emphasizing customized

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

180

services to hotel guests, the proposed system is also expected to enable guests to 
generate individual reports for their own use.

Currently, the hotel conducts its operations with a patchwork of separate systems 
(some automated and some manual) that address different functions. Moreover, these 
systems are often incompatible with each other, with the result that hotel staff 
frequently have to transfer information manually from one system to another. For 
example, there is a separate system for handling guest check-ins and a separate 
system for handling guest check-outs and billings, whereas charges (both room and 
non-room) are entered manually by the hotel staff. Whatever management reporting 
is undertaken is done manually.

Based on the results of interviews with the hotel management, the analyst identified 
the following six major activities to be supported by the proposed system: 1) guest 
registration (check-in), 2) guest charges (i.e., charges other than for the room), 3) 
guest room charges update, 4) report generation by guests, 5) guest check-out (i.e., 
billing and payment handling at check-out) and 6) report generation by hotel 
management. Each are described in detail below.

1. GUEST CHECK-IN

A new convention center scheduled to open next fall is expected to dramatically 
increase the number of guests using the hotel. Interviews with hotel staff suggest that 
the existing system for guest check-ins will not be able to handle this expected growth 
in volume. Some important problems in the existing system are:

a) Guests frequently have specific room preferences. The current system does not 
allow front-desk staff to identify rooms that axe vacant in a particular category 
(single, double, suite, etc.). The interviews suggest that it would be strongly 
desirable to be able to give guests a list of rooms that are currently vacant in the 
category that they have indicated. Guests can then select a particular room for 
stay.

b) Once the system receives information on the specific room selection made by the 
guest, it then ensures that the room is no longer available (until the guest checks 
out of it). The system then sends this room information to the process described 
below.

c) Currently, there is no way of knowing whether the guest who is checking in has 
stayed at the hotel before. This can be done by including a store containing 
information on previous guests who have stayed at the hotel (apart from a store

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

181

for guests who are currently staying). Information on previous guests can thus be 
moved into the store for current guests without having to reenter it.

When the guest checks in, it is also necessary that a record be created in the store 
for billing the guest. Currently, guests who check-in are not asked about the 
number of nights they expect to stay at the hotel. In the absence of such 
information, hotel management has found it difficult to forecast room occupancy 
and to schedule hotel operations accordingly. The proposed system is thus 
expected to capture this information at check-in. Information on the total room 
charges expected to be incurred by the guest can thus be maintained from the 
time of check-in in the file used to bill the guest.In addition, a record is also 
created in the store for processing guest payments.

2. GUEST CHARGES

Currently, although a wide variety of services (restaurant, bar, golf course, etc.,) are 
available in the hotel, guests are expect to pay “on the spot” for each service. This 
has frequently led to complaints from hotel guests who feel that this is a cumbersome 
procedure. Consequently, management has decided to allow guests to begin to charge 
a wide variety of services to their room after check-in. These charges will be added 
to the room bill and paid for by the guest at the time of check-out. Charges could 
include drinks at the hotel bars, meals at the restaurant, local tours, greens fees from 
the golf course, and many other services.

a) From the interviews, the analyst has identified that one major concern about 
allowing guests to charge to their rooms is that of fraud. Unless there is a 
mechanism for verifying that their guest does indeed stay in the room number 
he/she indicates at the time of making the charge, the wrong room may 
sometimes be billed for the service. The proposed system should thus address this 
concern by checking the guest name with the room number in which he/she is 
staying.

b) Once the room number has been verified, the proposed system should be able to 
capture information on the service being charged to the guest, at the time the 
charge is incurred. Interviews with staff suggest that two kinds of information 
should be stored by the proposed system with regard to the charge:

1) The system should keep track of all charges made in the hotel, in order of the 
instant (accurate to the minute) at which the charge was incurred. Such 
information should be stored in a separate repository related to charges.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

182

2) In addition to capturing information on the charge, the system should also 
update the total amount billed to the guest who is making the charge, at the 
instant that the charge is made. In the past, charges were billed to the guest 
only at the time of check-out. This frequently resulted in errors, disputes 
between hotel guests and staff, etc. Hotel staff feel that an immediate posting 
of the charge to the guest’s bill would reduce these problems. Also, the 
proposed system should be able to generate a receipt (relating to the charge) 
for the guest, at the time the charge is made.

3. ROOM CHARGES

Although the proposed system should capture information on the number of nights 
that a guest expects to stay in the hotel, the hotel staff suggest, based on previous 
experience, that the number of nights a guest actually stays in the hotel is often quite 
different. In keeping with management’s mission of generating accurate and timely 
information, the hotel staff feel that the system should at all times be able to track the 
actual number of nights spent in the hotel by the guest. Such information would be 
used subsequently in computing the total room charges that the guest had incurred at 
any given moment. Check-out time is officially 11 A.M, although a grace period of 
1 hour is usually given. Any guest who has not checked out by 12 noon is charged 
for an additional day. Room charges are computed in whole number of days — 
fractions of a day are not allowed. Previously, a manual process was used to identify 
those guests who had not checked out by 12 noon. However, this often led to errors 
and complaints.

4. GUEST REPORTS

Management was particularly excited about the possibility of enabling hotel guests to 
generate their own reports from the system. The executive manager of the hotel had 
attended a hotel managers convention in which some of the “leading edge” hotels had 
described how pleased their guests were with this service. The management of 
“Wildcats hotel felt that this facility (available via the TV set in each room) would 
give them a competitive advantage over other hotels in the area. The analyst 
identified the following reports which the guest could select from (note: only one 
report can be obtained for each request or transaction):

a) Total Bill Report After providing proper identification to the system, the guest 
could generate a report that would provide the current bill total, the current room 
charges total and the current charges (other than room) total that had accrued to 
the room the guest was staying in. In the past, such information was available 
only after going through a long and tedious procedure: the guest had to inquire

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

183

at the front desk regarding his/her current bill total, and the hotel staff would 
subsequently have to search manually through different records to compute the 
total. Management felt that their guests would be very happy at being able to 
generate such information from the proposed system at the “touch of a button”.

b) Details of Charges Report In the past, guests had been allowed to charge to their 
room. However, many guests had complained at check-out of erroneous charges 
that had been billed to them. Disputes over charges at check-out frequently led to 
nasty confrontations in the presence of guests who were waiting in line. Due to 
these problems, management had decided some years ago to discontinue the 
facility of allowing guests to charge to their room. Instead (as described earlier), 
guests were expected to pay for the service at the time the charge was incurred.

Although management now felt that restoring the facility to pay for a charge at 
the time of check-out was desirable (since guests clamored for this privilege), it 
was nevertheless concerned that the old problems could recur. Unless corrected, 
this was especially likely to create problems during conventions, since a large 
number of hotel guests tended to check-out at the same time.

The executive manager felt that enabling hotel guests to access information on the 
details of all their previous charges at any time during their stay could help 
reduce the problem. Hotel guests would then be able to immediately notify 
management of any errors, rather than wait until check-out. This would also give 
the hotel staff more time to correct the problem, rather than have to resolve it 
while the guest was checking out. Specifically, management felt that every hotel 
guest should be able to track each and every charge that had been made against 
his/her room up to that moment of his/her stay.

c) Events Report A wide variety of cultural activities and events take place year- 
round in Tucson. In the past, guests have complained that hotel staff often do not 
have adequate information on these cultural events. A year ago, the hotel 
developed a system to keep track of such cultural and other events. This 
information was used by the hotel staff to answer queries by customers. 
Management now feels that customer service can be improved by allowing hotel 
guests to access such information directly, instead of through intermediaries. The 
proposed system should thus allow the generation of such reports from the events 
system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

184

5. GUEST CHECK-OUT

The current check-out and billing system compiles the guest’s bill at time of check out 
and is essentially a manual process. Several problems were identified with the current 
system: 1) an anticipated inability to handle the expected increase in the number of 
guests, 2) the amount of time necessary to process a guest check-out has increased 
considerably, 3) incorrect bills have resulted in a significant increase in customer 
complaints. After extensive interviews with management and staff, the analyst 
identified the following major functions that the proposed system was to perform:

a) At the time of check-out, the guest returned the room keys to the hotel staff who in 
turn had to produce an itemized bill that described each charge (room, non-room 
related) incurred by the guest during his/her current stay at the hotel. To serve as an 
additional verification of the charges, the proposed system had to establish that the 
sum of the individual charges made by the guest did indeed correspond to the total 
charges that were billed for. This itemized bill was then presented to the customer 
for payment.

b) Once the payment was received from the guest, the system had to update many 
different pieces of information. Specifically, the system had to ensure that the room 
that had been occupied by the guest was now restored to its vacant status (to enable 
other guests to move into it). Information on payments made by hotel guests also had 
to be updated with the information on this guest’s payment. Moreover, since the guest 
was now checked out, information related to him/her had to be deleted from the list 
of guests who were being billed.

c) Finally, with the guest’s status now changed to being a previous guest, information 
about the guest had to be included with information on previous guests. The system 
had to generate a receipt for the guest for the payments made by liim/her.

6. MANAGEMENT REPORTS

In the past, the existing arrangements were particularly poor at generating relevant 
and useful information for hotel management. The executive manager returned from 
her conference convinced that there were a variety of reports which needed to be 
produced “at the touch of a button” for hotel management. Moreover, management 
had to find it very easy to use any proposed new system — the system would have to 
ask them only the minimal information (such as the report being requested) and then 
go ahead and produce the desired report. From interviews, the analyst identified the 
following three kinds of reports that had to be produced (note: only one report will be 
generated per request or transaction):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

185

a) Management was especially interested in knowing the funds flowing into the hotel. 
This information would be required for at least the past six months. The primary 
sources of funds were the payments made by hotel guests. Not only would such 
information reflect the inflow from a beginning date specified by the manager (and up 
to the current date), but would also be used later for any subsequent enhancements to 
the system.

b) Since the hotel offered a wide variety of hotel rooms (doubles, singles, suites, 
etc.), management was interest in knowing the percentage occupancy ratios (and 
information on the guests currently occupying them) for the different room types in 
the hotel. By putting together information about the current guests and about the type 
of rooms that they occupied, a wide variety of useful information could be accessed 
immediately by management.

c) Apart from reports on payments and room occupancy, management was also 
interested in obtaining a picture of the types of charges that were being made by hotel 
guests. For example, the executive manager foresaw a situation where she wanted to 
compare the revenue generated by the food section in the restaurant with the revenue 
generated by the bar. Such information would be useful in assessing the profitability 
of each of these chargeable services. In order to provide such information, the 
proposed system had to be able to access all the charges made at the hotel. It was not 
necessary; however, to identify the specific guest who was making a particular 
charge.

EXTERNAL ENTITIES (SOURCES AND SINKS)

The analyst identified the following external entities to the Wildcats Hotel system:

1. Hotel Management

Management was both a source (because it asked for certain reports) and a sink 
(because it received the desired reports).

2. Hotel Guests

Clearly, hotel guests were important sources and sinks. As sources, they provided 
numerous inputs to the system (as described above). As sinks, they received 
numerous outputs from the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

186

3. Events System

The events system was an external system that had to provide information about
events in Tucson when asked to by the hotel guests.

DATA STORES (OR FILES)

The analyst identified the following files for the system described earlier (note:
assume that these are the only ones used):

1. CHARGE FILE

The basic purpose of this file is to track all charges made by all guests in the hotel, in 
the chronological order in which the charge is made. Each record consists of five 
elements, one of which (i.e., charge date) is itself a record. Each record is created 
and written to the file whenever a charge to a room is made. The file contains 
information on charges made to only those rooms which are currently occupied.
When a guest checks out, all charges to that room are deleted from the file. The 
composition of the charge record is as follows:

charge date
day of charge 
month of charge 
year of charge 
hour of charge 
minute of charge 

charge type 
charge description 
charge amount 
room number charged to

2. BILL FILE

The basic purpose of this file is to keep up-to-date information on the expenses 
incurred by a guest at the hotel. There is one record for each room currently 
occupied in the hotel. Each record consists of four elements, in addition to the room 
number. The record keeps a running total of all guest charges, room charges (room 
rate * number of nights stayed so far by the guest) and the total current bill (current 
charges +  current room charges). It also contains information on the expected room 
charges for the guest (expected number of nights that will be stayed * room rate). A 
record is created and written to the file upon guest check-in. It is modified every

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

187

time a guest makes a charge to the room and at 12 noon every day when the system 
computes the current room charges. The record is deleted from the file when a guest 
checks out. The fields in the record are:

room number 
current charges total 
current room charges total 
current bill total 
expected room charges total

3. ROOM FILE

The purpose of this file is to store basic information on each room in the hotel 
relating to its occupancy and its nightly rate. There is a record in this file for each 
room in the hotel. The file is read and modified at the time of guest check-in, and is 
updated at the time of guest check-out. The file is also accessed at 12 noon every day 
for identifying the room rate to be used in computing current room charges for the 
guest. Each record consists of the following four elements:

room number 
room type 
vacancy status 
nightly rate

4. CURRENT GUEST FILE

The purpose of this file is to store relevant information (including personal 
information) on guests who are currently staying at the hotel. Personal information, 
such as name, address, company name and auto tag information is either entered for 
the first time (if the guest has never stayed before at the hotel) or taken from the 
PAST GUEST FILE if the guest has previously stayed at the hotel. There is a 
record for each guest in the hotel. Each record is created at the time of check-in and 
updated at the time of check-out. The file is also accessed when verifying guest id’s 
each time a guest makes a charge, when computing the current room charges 
accumulated by the guest, and also when generating management reports. At the time 
of guest check-in, the actual check-out date fields in this record are set to zero. Each 
record consists of the following fields:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

188

room number 
check-in date

day of check-in 
month of check-in 
year of check-in 
hour of check-in 
minute of check-in 

actual check-out date
day of actual check-out 
month of actual check-out 
year of actual check-out 
hour of actual check-out 
minute of actual check-out 

guest name
guest last name 
guest first name 

guest address
guest street number 
guest apartment number 
guest city 
guest state 
guest zip code 
guest country 

guest phone number 
guest company name 
guest auto tag

guest tag number 
guest auto registration state 

number of members in guest party 
number of nights expected to be stayed

5. PAST GUEST FILE

The purpose of this file is to archive relevant information on past guests who have 
stayed at the hotel. In addition to personal information on the guest, the file also 
stores information related to all previous stays by the guest. The file is read each time 
a guest checks into the hotel, and is updated each time a guest checks out. There is a 
record for each guest who has stayed at the hotel. Each record consists of the 
following fields:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

189

guest name
guest last name 
guest first name 

guest address
guest street number 
guest apartment number 
guest city 
guest state 
guest zip code 
guest country 

guest phone number 
guest company name 
guest auto tag

guest tag number 
guest auto registration state 

stay # 1
check-in date 

day of check-in 
month of check-in 
year of check-in 
hour of check-in 
minute of check-in 

actual check-out date 
day of actual check-out 
month of actual check-out 
year of actual check-out 
hour of actual check-out 
minute of actual check-out 

room number stayed in 
number of members in guest party 
number of nights of expected stay 
number of nights of actual stay 
total charges during stay 
total room charges during stay 
total amount billed for stay 
total amount paid for stay 

stay it 2

stay # n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

190

6. PAYMENT FILE

The purpose of this file is to capture detailed information on the charges (both room 
and other charges) made to the guest during his/her stay at the hotel, and the amount 
paid by the guest for these charges. There is a payment record for each guest. In 
addition to other information, each payment record contains a listing of each charge 
made to the guest.

A payment record is first created when the guest checks in and is updated when the 
guest checks out after paying for his/her hotel expenses. To facilitate management 
reporting (and to respond to any subsequent queries after check-out by the guest), the 
payment record corresponding to the guest is retained in the payment file for a period 
of six months after the guest has checked out. A separate system (not to be 
considered in the proposed system) deletes the record after the six months have 
elapsed.

Each payment record contains the following fields:

guest name
guest last name 
guest first name 

room number 
check-in date

day of check-in 
month of check-in 
year of check-in 
hour of check-in 
minute of check-in 

actual check-out date
day of actual check-out 
month of actual check-out 
year of actual check-out 
hour of actual check-out 
minute of actual check-out 

charge # 1 
charge date 

day of charge 
month of charge 
year of charge 
hour of charge 
minute of charge

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

191

charge description 
charge amount 

charge # 2

charge # n
total charges during stay
total room charges during stay
total amount paid for stay
payment type (i.e., cash, check or credit card)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

192

REFERENCES
Adelson, B., & Soloway, E. (1985). The role of domain experience in software 
design. THEE Transactions on Software Engineering. SE-11. 1351-1360.

Alavi, M. (1984). An assessment of the prototyping approach to information systems 
development. Communications of the ACM. 27, 556-563.

Alavi, M. (1993). Making CASE an organizational reality. Strategies and new 
capabilities needed. Information Systems Management. 10(2), 15-20.

Amundsen, B., & Christoffersen, B. (1987). Can today’s design tools support an 
integrated design method? Tietotekniikka-87.

Andrews, W. C. (1983). Prototyping information systems. Journal of Systems 
Management. 34(91. 16-18.

Arthur, L. J. (1985). Measuring programmer productivity and software quality. New 
York: John Wiley & Sons.

Baram, G., & Steinberg, G. (1989). Selection criteria for analysis and design CASE 
tools. Software Engineering Notes. 14(6), 73-80.

Baram, G., Steinberg, G., & Nosek, J. (1990). Evaluation of ease of use of CASE 
tool by first time users. In B. Whitten & J. Gilbert (Eds.), Proceedings of the Annual 
Meeting of the American Institute for Decision Sciences (pp. 934-936). Cincinnati, 
OH: American Institute for Decision Sciences.

Basili, V. R., & Reiter, R. W., Jr. (1981). A controlled experiment quantitatively 
comparing software development approaches. IEEE Transactions on Software 
Engineering. SE-7. 299-320.

Basili, V. R., Selby, R. W., & Hutchens, D. H. (1986). Experimentation in software 
engineering. IEEE Transactions on Software Engineering. SE-12. 733-743.

Batra, D., Hoffer, J. A., & Bostrom, R. P. (1990). Comparing representations with 
relational and EER models. Communications of the ACM. 33, 126-139.

Beck, L. L., & Perkins, T. E. (1983). A survey of software engineering practice: 
Tools, methods, and results. IEEE Transactions on Software Engineering. SE-9. 541- 
561.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

193

Beizer, B. (1990). Software testing techniques (2nd ed.). New York: Van Nostrand 
Reinhold.

Benander, B. A. (1990). Program design techniques: Programmer preference and 
relationship to program correctness and program development effort. The Journal of 
Computer Information Systems. 32(2). 66-71.

Benington, H. D. (1983). Production of large computer programs. Annals of the 
History of Computing. 5, 350-361. (Reprinted from Proceedings of the ONR 
Symposium on Advanced Programming Methods for Digital Computers. 1956, pp. 
15-27.)

Boehm, B. W. (1976). Software engineering. IEEE Transactions on Computers. C- 
25, 225-240.

Boehm, B. W. (1981). Software engineering economics. Englewood Cliffs, NJ: 
Prentice Hall.

Boehm, B. W. (1986). A spiral model of software development and enhancement. 
Software Engineering Notes. 11(4). 14-24.

Boehm, B. W., Gray, T. E., & Seewaldt, T. (1984). Prototyping vs. specifying: A 
multi-project experiment. In W. E. Howden & J. -C. Rault (Eds.), Proceedings of the 
7th International Conference on Software Engineering (pp. 473-485). Los Angeles: 
IEEE Computer Society Press.

Boehm, B. W., McCleam, R., & Unfrig, D. (1975). Some experiences with 
automated aids to the design of large-scale reliable software. IEEE Transactions on 
Software Engineering, i ,  125-133.

Bordoloi, B., Courtney, L., & Paranusiwaean, R. (1992). A framework for 
evaluating CASE tools [Summary]. In R. T. Sumichrast (Ed.), Proceedings of the 
Annual Meeting of the American Institute for Decision Sciences (p. 882). Cincinnati, 
OH: American Institute for Decision Sciences.

Bostrom, B. T. (1988). Information systems development supporting methodologies 
with computerized tools. Proceedings of the Polish-Scandinavian Seminar on ISDM.

Brooks, F. P. (1987). No silver bullet: Essence and accidents of software 
engineering. Computer. 20(4). 10-19.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

194

Brooks, R. E. (1980). Studying programmer behavior experimentally: The problems 
of proper methodology. Communications of the ACM. 23. 207-213.

Brooks, W. D. (1981). Software technology payoff: Some statistical evidence. The 
Journal of Systems and Software. 2, 3-9.

Burkhard, D. L. (1989). Implementing CASE tools. Journal of Systems Management. 
40(5), 20-25.

Cadre Technologies. (1988). Teamwork/PCSA user’s guide. Providence, RI: Author.

Card, D. N., Church, V. E., & Agresti, W. W. (1986). An empirical study of 
software design practices. IEEE Transactions on Software Engineering. SE-12. 264- 
270.

Card, D. N., McGarry, F. E., & Page, G. T. (1987). Evaluating software 
engineering technologies. IEEE Transactions on Software Engineering. SE-13. 845- 
851.

Carey, J. M., & McLeod, R. (1988). Use of system development methodology and 
tools. Journal of Systems Management. 39(3), 30-35.

Carmel, E., & Becker, S. (1993). A process model for software package 
development. Manuscript submitted for publication.

Carroll, J. M., & Carrithers, C. (1984). Training wheels in a user interface. 
Communications of the ACM. 27, 800-806.

Carroll, J. M., & McKendree, J. (1987). Interface design issues for advice-giving 
expert systems. Communications of the ACM. 30, 14-31.

Cerveny, R. P., Garrity, E. J., & Sanders, G. L. (1986). The application of 
prototyping to systems development: A rationale and model. Journal of Management 
Information Systems. 3(2), 52-62.

Chapin, N. (1979). Some structured analysis techniques. Data Base. 10(1), 16-23.

Chou, D. C., Kelley, G., & Land ram, F. (1992). Managing software quality 
assurance in CASE environment. Manuscript submitted for publication.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

195

Colter, M. A. (1982). Evolution of the structured methodologies. In J. D. Couger,
M. A. Colter, & R. W. Knapp (Eds.), Advanced system development/feasibility 
techniques (pp. 73-96). New York: John Wiley & Sons.

Colter, M. A. (1984). A comparative examination of systems analysis techniques.
MIS Quarterly. 8, 51-66.

Conger, S. A. (1994). The new software engineering. Belmont, CA: Wadsworth.

Couger, J. D. (1973). Evolution of business system analysis techniques. Computing 
Surveys. 5, 167-198.

Couger, J. D. (1982). Fourth generation development techniques for computer-based 
systems. In J. D. Couger, M. A. Colter, & R. W. Knapp (Eds.), Advanced system 
development/feasibility techniques (pp. 71-72). New York: John Wiley & Sons.

Crockett, H. D., Hall, G. R., & Wheeler, M. E. (1992). Conceptual application of 
total quality management (TQM) to the systems development lifecycle (SDLC). In R. 
T. Sumichrast (Ed.), Proceedings of the Annual Meeting of the American Institute for 
Decision Sciences (pp. 982-984). Cincinnati, OH: American Institute for Decision 
Sciences.

Crosslin, R. L., Bergin, T. J., & Stott, J. W. (1993). Critical factors influencing the 
future of computer-aided software engineering. In T. J. Bergin (Ed.), Computer-aided 
software engineering: Issues and trends for the 1990s and beyond (pp. 616-637). 
Harrisburg, PA: Idea Group.

Crow, G. B. (1990). BriefCASE — The collegiate systems development tool. 
Cincinnati, OH: South-Western.

Davis, G. B. (1982). Strategies for information requirements determination. IBM 
Systems Journal. 21.(1), 4-30.

Davis, G. B. (1987). Evaluation of computer aided software engineering packages. 
Information Technology — Journal of the Singapore Computer Society. 1(4), 51-55.

Day, D. L. (1993). Precis of behavioral and perceptual responses to constraint 
management in computer-mediated design activities. Electronic Journal of 
Communication [On-Line], 3(2). Available e-mail: comserve@ipitsvm.bitnet 
Message: send day v3n293

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

196

DBMS. (July 1991). CASE tool roundup. DBMS, pp. 62-69.

DeGrace, P., & Stahl, L. H. (1990). Wicked problems, righteous solutions. A 
catalogue of modem software engineering paradigms. Englewood Cliffs, NJ: Yourdon 
Press.

DeMarco, T. (1982). Controlling software projects. Englewood Cliffs, NJ: Yourdon 
Press.

Dennis, A. R., George, J. F., Jessup, L. M., Nunamaker, J. F., Jr., & Vogel, D. R. 
(1988). Information technology to support electronic meetings. MIS Quarterly. 12, 
591-624.

DeSanctis, G., D’Onofrio, M. J., Sambamurthy, V., & Poole, M. S. (1989). 
Comprehensiveness and restrictiveness in group decision heuristics: Effects of 
computer support in consensus decision making. In J. I. DeGross, J. C. Henderson,
& B. R. Konsynski (Eds.), Proceedings of the Tenth International Conference on 
Information Systems (pp. 131-140). Baltimore, MD: Association for Computing 
Machinery.

Everest, G. C., & Alanis, M. (1992). Assessing user experience with CASE tools:
An exploratory analysis. In J. F. Nunamaker, Jr. (Ed.), Proceedings of the 25th 
Hawaii International Conference on System Sciences (pp. 343-352). Los Alamitos, 
CA: IEEE Computer Society Press.

Falkner, R. (1991). Quality-driven software. Computerworld. 25(17), pp. 93, 96.

Fenton, N. E. (1991). Software metrics. A rigorous approach. London, Chapman & 
Hall.

Freeman, R. J. (1993). Measuring the effects of CASE. In T. J. Bergin (Ed.), 
Computer-aided software engineering: Issues and trends for the 1990s and beyond 
(pp. 542-551). Harrisburg, PA: Idea Group.

Frolick, M. N., Wilkes, R. B., & Rainer, R. K. (1993). Is CASE living up to its 
promises? Laboratory experiments comparing manual and automated design 
approaches. Journal of Computer Information Systems. 33(4), 72-76.

Gane, C. (1990). Computer-aided software engineering: The methodologies, the 
products, and the future. Englewood Cliffs, NJ: Prentice Hall.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

197

Gibson, M. L. (1989). The CASE philosophy. Byte. 13(4), pp. 209-218.

Ginzberg, M. J. (1981). Early diagnosis of MIS implementation failure. Management 
Science. 27. 459-478.

Glass, M. C., Hughes, J. G., Johnston, W., & McChesney, I. (1989). Critical 
analysis of tools for computer-aided software engineering. Information and Software 
Technology. 31, 486-496.

Golden, J. R., Mueller, J. R., & Anselm, B. (1981). Software cost estimating: Craft 
or witchcraft. Data Base. 12(3), 12-14.

Granger, M. J., & Pick, R. A. (1991). Computer-aided software engineering’s impact 
on the software development process: An experiment. In J. F. Nunamaker, Jr. (Ed.), 
Proceedings of the 24th Hawaii International Conference on System Sciences (pp. 28- 
35). Los Alamitos, CA: IEEE Computer Society Press.

Guimaraes, T. (1985). A study of application program development techniques. 
Communications of the ACM. 28. 494-499.

Haase, V., & Koch, G. (1982). Developing the connection between user and code. 
Computer. 15(51. 10-11.

Hannafin, M. J. (1984). Guidelines for using locus of instructional control in the 
design of computer-assisted instruction. Journal of Instructional Development. 7(3), 6- 
10.

Heiat, A., & Heiat, N. (1992). The effect on student learning of integrating CASE 
tools in MIS curricula. Interface: The Computer Education Quarterly. 14(1), 43-45.

Henderson, J. C., & Cooprider, J. G. (1990). Dimensions of I/S planning and design 
aids: A functional model of CASE technology. Information Systems Research. I ,  227- 
254.

Henken, P. (1988). Improving structured analysis with video. Journal of Systems 
Management. 39(5), 17-23.

Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1986). Direct manipulation 
interfaces. In D. A. Norman & S. W. Draper (Eds.), User centered system design: 
New perspectives on human-computer interaction. Hillsdale, NJ: Lawrence Erlbaum 
Associates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

198

International Business Machines. (1990). Euphoria hotel room management system 
version 2.0 requirements/external design document (enhanced JAD design exercise 
solution!.

Intersolv. (1989). Excelerator version 1.9 application guide. Rockville, MD: Author.

Jankowski, D. J., & Norman, R. J. (1992). Computer-aided software engineering 
(CASE) technology in the information systems curriculum: Current practice. The 
Journal of Computer Information Systems. 32(31. 6-14.

Jones, C. (1986). Programming productivity. New York: McGraw-Hill.

Jones, C. (1991). Applied software measurement. New York: McGraw Hill.

Kapur, G. (1986, December 1). Productivity tools betray promises of MIS nirvana. 
Computerworld. 20. pp. 61-78.

Kemerer, C. F. (1989). An agenda for research in the managerial evaluation of 
computer-aided software engineering (CASE) tool impacts. In B. Shriver (Ed.), 
Proceedings of the 22nd Hawaii International Conference on System Sciences (pp. 
219-228). Los Alamitos, CA: IEEE Computer Society Press.

Kemerer, C. F. (1992). How the learning curve affects CASE tool adoption. IEEE 
Software. 9(3), 23-28.

Kendall, R. C. (1977, July 25). Management perspectives on programs, 
programming, and productivity. Computerworld. i l ,  p. 21.

Khailany, A., Sanchez, P., & Lee, L. (1985). On software maintenance costs. In B. 
Hartman & J. Ringuest (Eds.), Proceedings of the Annual Meeting of the American 
Institute for Decision Sciences (pp. 321-324). Cincinnati, OH: American Institute for 
Decision Sciences.

Kievit, K., & Martin, M. (1989). Systems analysis tools -- Who’s using them? 
Journal of Systems Management. 40(7), 26-30.

Ledgard, H. F. (1987). Professional software: Vol. 1. Software engineering concepts. 
Reading, MA: Addison-Wesley.

Lempp, P., & Lauber, R. (1989) What productivity increases to expect from a CASE 
environment: Results of a user survey. In E. J. Chikofsky (Ed.), Computer-aided

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

199

software engineering (CASE) (pp. 105-111). Washington, DC: IEEE Computer 
Society Press. (Reprinted from Productivity: Progress. Prospects, and Payoff. June 
1988, pp. 13-19).

Lindholm, E. (1992). A world of CASE tools. Datamation. 38(5), pp. 75-81.

Linos, P. K. (1992). ToolCASE: A repository of computer-aided software 
engineering tools. Software Engineering Notes. 17(2), 74-78.

Long, L. E., & Long, N. (1990). Computers (2nd ed.). Englewood Cliffs, NJ: 
Prentice Hall.

Loy. P. (1993). The method won’t save you (but it can help). Software Engineering 
Notes. 18(1), 30-34.

MacDonell, S. G. (1993). CASE and 4GL product users’ participation in software 
engineering research. Software Engineering Notes. 18(3). A42-A43.

Mahmood, M. A. (1987). System development methods -- A comparative 
investigation. MIS Quarterly. 11, 293-311.

Mann, J. E. (1992). Empirical research on the adoption and use of system 
development methodologies: Literature review and extrapolation to future research. In 
R. T. Sumichrast (Ed.), Proceedings of the Annual Meeting of the American Institute 
for Decision Sciences (pp. 878-880). Cincinnati, OH: American Institute for Decision 
Sciences.

Martin, J., & McClure, C. L. (1988). Structured techniques: The basis for CASE. 
Englewood Cliffs, NJ: Prentice Hall.

McCall, J.A., Richards, P.K., & Walters, G.F. (1977). Factors in software quality: 
Vol. 1. Concept and definitions of software quality. (Contract No. F030602-76-C- 
0417). Sunnyvale, CA: General Electric Company.

McClure, C. (1989a). CASE is software automation. Englewood Cliffs, NJ: Prentice 
Hall.

McClure, C. (1989b). The CASE experience. Byte. 14(4), pp. 235-246.

McDermid, D. C. (1990). Software engineering for information systems. Oxford,
UK: Blankwell Scientific Publishing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

200

McGaughey, R. E., & Gibson, M. L. (1990). CASE and information system quality 
(Working Paper No. AUCOB00007). Auburn, AL: Auburn University, College of 
Business.

McKeen, J. D. (1983). Successful development strategies for business information 
systems. MIS Quarterly. 7(3), 47-65.

McMenamin, S. M., & Palmer, J. F. (1984). Essential systems analysis. Englewood 
Cliffs, NJ: Yourdon Press.

Moher, T., & Schneider, G. M. (1982). Methodology and experimental research in 
software engineering. International Journal of Man-Machine Studies. 16. 65-87.

Nash, K. S. (1992). Tempered hopes best route to CASE. Computerworld. 26(41),
pp. 1, 20.

Necco, C. R., Gordon, C. L., & Tsai, N. W. (1987). Systems analysis and design: 
Current practices. MIS Quarterly. IT, 461-475.

Necco, C. R., Tsai, N. W., & Holgeson, K. W. (1989). Current usage of CASE 
software. Journal of Systems Management. 40(5), 6-11.

Norman, R. J., and Nunamaker, J. F., Jr. (1989). CASE productivity perceptions of 
software engineering professionals. Communications of the ACM. 32, 1102-1108.

Nunamaker, J. F., Jr., Dennis, A. R., Valacich, J. S., Vogel, D. R., & George, J.
F. (1993). Group support systems research: Experience from the lab and field. In L. 
M. Jessup & J. S. Valacich (Eds.), Group support systems (pp. 125-145). New York: 
MacMillan.

Omar, M. H. (1992). Seeing is believing: Demos enhance the learning of new MIS 
topics and tools. Interface: The Computer Education Quarterly. 14(1), 24-26.

Palvia, P., & Nosek, J. T. (1990). An empirical evaluation of system development 
methodologies. Information Resources Management Journal. 3(3), 23-32.

Page-Jones, M. (1988). The practical guide to structured systems design. Englewood 
Cliffs, NJ: Yourdon Press.

Page-Jones, M. (1992). The CASE manifesto. CASE Outlook. 6(1), pp. 33-42.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

201

Pallatto, J. (1989, January 23). Survey uncovers truth of real life CASE software. PC 
Week, pp. 39, 46.

Pressman, R. S. (1992). Software engineering: A practitioner’s approach. New York: 
McGraw-Hill.

Purvis, R. L., & Sambamurthy, V. (1992). A comparative investigation of system 
design methodologies [Summary]. In R. T. Sumichrast (Ed.), Proceedings of the 
Annual Meeting of the American Institute for Decision Sciences (p. 864). Cincinnati, 
OH: American Institute for Decision Sciences.

Putnam, L. H. (1978). A general empirical solution to the macro software sizing and 
estimating problem. IEEE Transactions on Software Engineering. SE-4. 345-361.

Rob, P., & Coronel, C. (1993). Database systems. Design, implementation, and 
management. Belmont, CA: Wadsworth.

Roberts, T. L. (1980). Evaluation of computer text editors (Doctoral dissertation, 
Stanford University). Dissertation Abstracts International. 40. 5338B.

Robillard, P. (1989). A project-based software course: The myth of the “real world”. 
In N. E. Gibbs (Ed.), Proceedings of the 1989 SEI Conference on Software 
Engineering Education (pp. 297-308). New York: Springer-Verlag.

Rowe, J. M. (1993). Can enforced standardization affect CASE usage? Journal of 
Systems Management. 44(3). 29-33.

Rozman, I., Gyorkos, J., & Rizman, K. (1992). Understandability of the software 
engineering method as an important factor for selecting a CASE tool. Software 
Engineering Notes. 17(3), 43-46.

Rubin, H. A. (1983). Macro-estimation of software development parameters: The 
ESTTMACS system. SOBTBAIR — Software Development: Tools. Techniques, and 
Alternatives (pp. 109-118). Los Alamitos, CA: IEEE Computer Society Press.

Runyan, L. (1989). Escaping technology’s tar pit. Datamation. 35(7), p. 26.

Sakthivel, S. (1991). Information systems development methodologies: A comparative 
analysis. In S. Melnyk (Ed.), Proceedings of the Annual Meeting of the American 
Institute for Decision Sciences (pp. 845-847). Cincinnati, OH: American Institute for 
Decision Sciences.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

202

Schmidt, A. (1992). Working with Excelerator version 1.9. Englewood Cliffs, NJ: 
Prentice Hall.

Shafer, L. I., & Shafer, D. F. (1993) Establishing a CASE toolbox. 15 steps to 
selecting CASE tools. Information Systems Management. 10(1), 15-23.

Shultz, S. (1989). Du Pont’s I/S team builds a good case for CASE tools. Chief 
Information Officer Journal. 1(4), pp. 26-28.

Silver, M. S. (1988a). On the restrictiveness of decision support systems. In R. M. 
Lee, A. M. McCosh, & P. Migliarese (Eds.), Organizational decision support 
systems (pp. 259-270). New York: Elsevier Science Publishers.

Silver, M. S. (1988b). User perceptions of decision support system restrictiveness:
An experiment. Journal of Management Information Systems. 5(1), 51-65.

Silver, M. S. (1990). Decision support systems: directed and nondirected change. 
Information Systems Research, i ,  47-70.

Silver, M. S. (1991a). Decisional guidance for computer-based decision support. MIS 
Quarterly. 15, 105-122.

Silver, M. S. (1991b). Systems that support decision makers: Description and 
analysis. New York: John Wiley & Sons.

Slusky, L. (1989). Academic training in SDLC/R methodology with Excelerator. 
Proceedings of the 18th Annual Western Decision Sciences Institute.

Stamps, D. (1987). CASE: Cranking our productivity. Datamation. 33(13), pp. 55- 
58.

Statland, N. (1989). Payoffs down the pike: A CASE study. Datamation. 35(7), pp. 
32-33, 52.

Subramanian, G. H., & Gershon, M. (1991). The selection of computer-aided 
software engineering tools: A multi-criteria decision making approach. Decision 
Sciences. 22, 1109-1123.

Sumner, M. (1993). Factors influencing the adoption of CASE. In T. J. Bergin (Ed.), 
Computer-aided software engineering: Issues and trends for the 1990s and bevond 
(pp. 130-155). Harrisburg, PA: Idea Group.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

203

Sumner, M., & Sitek, J. (1986). Are structured methods for systems analysis and 
design being used? Journal of Systems Management. 37(6), 18-23.

Teichroew, D., & Hershey, E. A., HI. (1977). PSL/PSA: A computer-aided 
technique for structured documentation and analysis of information processing 
systems. TEEH Transactions on Software Engineering. SE-3. 41-48.

Teng, J., & Sethi, V. (1990). A comparison of information requirements analysis 
methods: An experimental study. Data Base. 21(1), 27-39.

Teresko, J. (1990, April 2). What MIS should be telling you about CASE. Industry 
Week, pp. 82-85.

Troy, D. A., & Zweben, S. H. (1981). Measuring the quality of structured designs. 
The Journal of Systems and Software. 2, 113-120.

Vessey, I., Jarvenpaa, S. L., & Tractinsky, N. (1992). Evaluation of vendor 
products: CASE tools as methodology companions. Communications of the ACM. 
35(4), 90-105.

Visible Systems. (1989). The CASE primer. Waltham, MA: Author.

Walston, C. E., & Felix, C. P. (1977). A method of programming measurement and 
estimation. IBM Systems Journal. 16(11. 54-73.

Wenig, R. (1991). Introduction to C.A.S.E. technology using Visible Analyst 
Workbench. New York: MacMillan.

Whitten, J. L., Bentley, L. D., & Barlow, V. M. (1989). Projects and cases for use 
with systems analysis and design methods. Homewood, IL: Irwin.

Windsor, J. C. (1986). Are automated tools changing systems analysis and design? 
Journal of Systems Management. 37(11), 28-32.

Wrigley, C. D., & Dexter, A. S. (1987). Software development estimation models: A 
review and critique. In H. Barki (Ed.), Proceedings of the Administrative Sciences 
Association of Canada: MIS Division, (pp. 125-138). Toronto, Ontario:
Administrative Sciences Association of Canada.

Wrigley, C. D., & Dexter, A. S. (1988). A model for estimating information system 
requirements size: Preliminary findings. In J. DeGross & M. Olson (Eds.),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

204

Proceedings of the 9th International Conference on Information Systems, (pp. 245- 
255). Baltimore, MD: Association for Computing Machinery.

Wu, S. Y., & Wu, M. S. (1994). Systems analysis and design. Minneapolis/St. Paul, 
MN: West.

Wynekoop, J. L., & Conger, S. A. (1991). A review of computer aided software 
engineering research methods. In H. Nissen, H. Klein, & R. Hirscheim (Eds.), 
Information Systems Research: Contemporary Approaches & Emergent Traditions.
(pp. 301-325). Amsterdam: North-Holland.

Yellen, R. E. (1990). Systems analysts performance using CASE versus manual 
methods. In J. F. Nunamaker, Jr. (Ed.), Proceedings of the 23rd Hawaii International 
Conference on System Sciences (pp. 497-500). Los Alamitos, CA: IEEE Computer 
Society Press.

Yourdon, E. (1986). What ever happened to structured analysis? Datamation. 32(11), 
pp. 133-138.

Yourdon, E. (1989). Modem structured analysis. Englewood Cliffs, NJ: Yourdon 
Press.

Yourdon, E. (1992). Decline & fall of the American programmer. Englewood Cliffs, 
NJ: Yourdon Press.

Yourdon, E., & Constantine, L. L. (1979) Structured design: Fundamentals of a 
discipline of computer program and systems design. Englewood Cliffs, NJ: Yourdon 
Press.

Zucconi, L. (1989). Selecting a CASE tool. Software Engineering Notes. 14(2). 42- 
44.

Zultner, R. (1988). The Deming approach to software quality engineering. Quality 
Progress. 21.(11), 58-64.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


